8 Gauss' Law

$$
\begin{array}{rrr}
& \Phi \equiv \oint_{S} \vec{E} \cdot \hat{n} \mathrm{~d} A & \Phi=\frac{Q_{\text {enc }}}{\epsilon_{0}} \\
\text { Cylinder: } & \mathrm{d} V=r \mathrm{~d} r \mathrm{~d} \phi \mathrm{~d} z & \mathrm{~d} V_{\text {sym }}=2 \pi r \mathrm{~d} r \mathrm{~d} z \\
\text { Sphere: } & \mathrm{d} V=\rho^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \rho & \mathrm{~d} V_{\text {sum }}=4 \pi \rho^{2} \mathrm{~d} \rho
\end{array}
$$

29-1 A spherical rubber balloon carries a charge that is uniformly distributed over its surface. As the balloon is blown up, how does \vec{E} vary for points (a) inside the balloon, (b) at the surface of the balloon, and (c) outside the balloon?

29-2 A cube with side length L is oriented with one corner at the origin, and its edges along the positive x, y, z axes. Find the electric flux through the $x y$ (bottom) face of the cube, in the presence of a uniform electric field \vec{E}, in N/C, (a) $6 \hat{k}$ (b) $-2 \hat{j}$ (c) $-3 \hat{i}+4 \hat{k}$. (d) Calculate the total flux through the cube for each case.

29-3 An electric field passes through a hemisphere with a flat base of radius R. The electric field is uniform, $\vec{E}=\left(E_{x}, E_{y}, E_{z}\right)$. The axis of the hemisphere is in the $+z$ direction. Calculate the electric flux through the curved (top) part of the hemisphere.

29-6 The net electric flux through each face of a 6-sided dice has magnitude in units of $10^{3} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}$ equal to the number N of spots on the face (1 through 6). The flux is inward for N odd and outward for N even. What is the net charge inside the dice?

29-12 A point charge q is placed at one comer of a cube of edge a. What is the flux through each of the cube faces? (Hint: Use Gauss law and symmetry arguments.)

29-32 A large flat nonconducting surface carries a uniform charge density a. A small circular hole of radius R has been cut in the middle of the sheet. Calculate the electric field at point P, a distance z from the center of the hole along its axis.

29-41 Positive charge is distributed uniformly throughout a long, nonconducting cylindrical shell of inner radius R and outer radius $2 R$. At what radial depth beneath the outer surface of the charge distribution is the electric field strength equal to one-half the surface value?

29-42 The spherical region $a<r<b$ carries a charge per unit volume of $\rho=A / r$, where A is a constant. At the center ($r=0$) of the enclosed cavity is a point charge a. What should be the value of q so that the electric field in the region $a<r<b$ has constant magnitude?

29-44 A spherical region carries a uniform charge per unit volume ρ. Let \vec{r} be the vector from the center of the sphere to a general point P within the sphere. (a) Show that the electric field at P is given by $\vec{E}=\rho \vec{r} / 3 \epsilon_{0}$. (b) A spherical cavity is created in the above sphere, not necessarily in the center. Using superposition concepts, show that the electric field at all points within the cavity is $\vec{E}=\rho \vec{a} / 3 \epsilon_{0}$ (uniform field), where \vec{a} is the vector connecting the center of the sphere with the center of the cavity.

29-46 A plane slab of thickness d has a uniform volume charge density ρ. Find the magnitude of the electric field at all points in space both (a) inside and (b) outside the slab, in terms of x, the distance measured from the median plane of the slab.

