17 Ampere's Law

$$
\begin{array}{crrr}
\text { Wire: } & \mathrm{d} \vec{F}=I \mathrm{~d} \vec{l} \times \vec{B} & \tau=N_{\text {loops }} I A \hat{n} \times B & \vec{\mu}=I A \hat{n} \\
\text { Dipole: } & \vec{\tau}=\vec{\mu} \times \vec{B} & U=-\vec{\mu} \cdot \vec{B} & F_{z}=-\frac{\mathrm{d} U}{\mathrm{~d} z}=\mu_{z} \frac{\mathrm{~d} B}{\mathrm{~d} z}
\end{array}
$$

1. (RHK Exercise 32.32) A metal wire of mass m slides without friction on two horizontal rails spaced a distance c apart, as shown below. The track lies in a vertical uniform magnetic field \vec{B}. A constant current I flows from the generator along one rail, across the wire, and back down the other rail. Find the velocity of the wire as a function of time, assuming it to be at rest at $t=0$.

2. (RHK Problem 32.18) The figure below shows a wire ring of radius a at right angles to the general direction of a radially symmetric diverging magnetic field. The magnetic field at the ring is everywhere of the same magnitude B, and its direction at the ring is everywhere at an angle θ with a normal to the plane of the ring. Find the magnitude and direction of the force the field exerts on the ring if the ring carries a current I as shown. (The twisted wire leads have no effect on this problem.)

3. (RHK Exercise 35.11) A charge q is uniformly distributed around a thin ring of radius r. The ring is rotating about an axis through its center and perpendicular to its plane at angular frequency ω. (a) Show that the magnetic moment due to the rotating charge is $\mu=(1 / 2) q \omega r^{2}$. (b) If L is the angular momentum of the ring, show that $\mu / L=q / 2 m$.
4. (RHK Problem 35.1) A thin, plastic disk of radius R has a charge q uniformly distributed over its surface. If the disk rotates at an angular frequency ω about its axis, show that magnetic dipole moment of the disk is

$$
\begin{equation*}
\mu=\frac{\omega q R^{2}}{2} \tag{17.1}
\end{equation*}
$$

5. A circular loop of wire with radius r and mass m is centered on the z-axis. A current I flows counterclockwise through the wire. An external, non-uniform magnetic field $\vec{B}=B_{0} z^{2} \hat{z}$ is applied. (a) What is the magnetic moment of the loop? (b) What is the potential energy of the loop, as a function of its height along the z-axis? (c) What is the corresponding force on the loop? (d) If the loop intially is stationary at height h_{0}, find its height $h(t)$ as a function of time.
