15 Magnetic force on particles

Particle:

$$
\vec{F}=q \vec{v} \times \vec{B}
$$

$$
F=q v B \sin \theta
$$

$$
a_{c}=\frac{v^{2}}{r}
$$

Dipole:

$$
\vec{\tau}=\vec{\mu} \times \vec{B}
$$

$$
U=-\vec{\mu} \cdot \vec{B}
$$

$$
F_{z}=-\frac{\mathrm{d} U}{\mathrm{~d} z}=\mu_{z} \frac{\mathrm{~d} B}{\mathrm{~d} z}
$$

1. (Cyclotron motion) A particle with charge $+q$ and mass m is placed in a uniform magnetic field $\vec{B}=B \hat{z}$. At $t=0$, the particle is at $x=y=z=0$ and has velocity $\vec{v}=v \hat{x}$. At a later time, the particle may have more general velocity $\vec{v}(t)=\left(v_{x}(t), v_{y}(t), v_{z}(t)\right)$.
(a) What is the force on the particle at $t=0$? What is it at a later time t, in terms of B and the components of $\vec{v}(t)$?
(b) Use Newton's 3rd law to write down equations relating $\vec{v}(t)$ and $\vec{a}(t)=\mathrm{d} \vec{v} / \mathrm{d} t$ at any time t.
(c) Explain why $|v(t)|$ remains constant, and why $v_{z}(t)=0$.
(d) Solve the equations you found in part b to find $v_{x}(t)$ and $v_{y}(t)$.
(e) Integrate to find $x(t), y(t), z(t)$.
(f) You should get uniform circular motion. What are the radius r and angular frequency ω for this motion, as a function of q, m, B ?
2. (RHK Problem 32-6) The diagram below shows a design for a mass spectrometer, a device for measuring the masses of ions (charged particles). An ion of mass m and charge $+q$ is produced at rest in the source S, and then accelerated by a potential difference ΔV into the entry slit of a magnetic chamber. The ion then enters a uniform magnetic field \vec{B} and moves in a semicircle until it strikes a photographic plate at a distance x from the entry slit. Show that the ion mass m is given by

$$
\begin{equation*}
x=\frac{B^{2} q}{8 \Delta v} x^{2} \tag{15.1}
\end{equation*}
$$

