13 DC Circuits - Capacitors

$$
\begin{array}{rrr}
Q=C V & C_{\text {eq, parallel }}=\sum_{i} C_{i} & C_{\mathrm{eq}, \text { series }}^{-1}=\sum_{i} C_{i}^{-1} \\
C_{\text {plate }}=\epsilon_{0} \frac{A}{d} & C_{\text {dielectric }}=\kappa C_{0} & U=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C}=\frac{1}{2} Q V
\end{array}
$$

1. (RHK Exercise 30-12) Each of the uncharged capacitors in the figure below has a capacitance of 25 μF. A potential difference of 4200 V is established when the switch S is closed. How much charge then passes through the ammeter A?

2. (RHK Exercise 30-37) A slab of copper of thickness b is thrust into a parallel-plate capacitor as shown below. (a) What is the capacitance after the slab is introduced? (b) If a charge q is maintained on the plates, find the ratio of stored energy before / after the slab is introduced. (c) How much work is done on the slab as it is inserted? Is the slab pulled in or do you have to push it in? (d) What changes if the potential ΔV is held fixed, instead of q ?

3. (RHK Problem 30-5) In the figure below, capacitors $C_{1}=1 \mu F$ and $C_{2}=3 \mu F$ are each charged to a potential difference $\Delta V=6 \mathrm{~V}$, but with opposite polarity, so that points a and c in the figure are on the positively charged side, and points b and d are on the negative side. After closing switches S_{1} and S_{2} : (a) What is the potential difference between points e and f ? (b) What is the charge on C_{1} ? (c) What is the charge on C_{2} ?

4. (RHK Problem 30-6) When switch S is thrown to the left in the circuit below, the plates of the capacitor C_{1} acquire a potential difference ΔV_{0}. The other capacitors C_{2} and C_{3} are initially uncharged. The switch is now thrown to the right. What are the final charges q_{1}, q_{2}, q_{3} on the corresponding capacitors?

5. (RHK Problem 30-9) In the circuit below, a battery supplies a potential difference of $\Delta V=12 \mathrm{~V}$. (a) Find the charge on each capacitor when the switch S_{1} is closed and (b) when (later) switch S_{2} is also closed. Take $C_{1}=1 \mu \mathrm{~F}, C_{2}=2 \mu \mathrm{~F}, C_{3}=3 \mu \mathrm{~F}$ and $C_{4}=4 \mu \mathrm{~F}$.

6. (RHK Problem 30-10) Find the equivalent capacitance between points x and y in the circuit below. Assume that $C_{1}=C_{3}=C_{4}=C_{5} \equiv C$, but $C_{2} \neq C$. (Hint: Apply a potential difference ΔV between x and y and write down all the relationships that involve the charges and potential differences for the separate capacitors.)

