10 Electric Potential

$$
\begin{array}{rrr}
V(\vec{b})-V(\vec{a})=\int_{a}^{b} \vec{E} \cdot \mathrm{~d} \vec{l} \quad & V_{\text {point }}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} & U=q V \\
U_{\text {collection }}=\frac{\epsilon_{0}}{2} \int_{\mathrm{Vol}}|\vec{E}|^{2} \mathrm{~d} V=\frac{\epsilon_{0}}{2} \int_{\mathrm{Vol}} \rho V \mathrm{~d} V &
\end{array}
$$

1. A total amount of positive charge Q is spread onto a nonconducting, flat, circular annulus of inner radius a and outer radius b. The charge is distributed so that the charge density per unit area is $\sigma=k / r^{3}$. Show that (with $V=0$ at infinity)

$$
V=\frac{Q}{8 \pi \epsilon_{0}} \frac{a+b}{a b}
$$

at the center of the annulus.
2. The electric field inside a nonconducting sphere of radius R, containing uniform charge density, is radially directed and has magnitude

$$
E=\frac{Q r}{4 \pi \epsilon_{0} R^{3}}
$$

where Q is the total charge in the sphere and r is the distance from the center of the sphere. (a) Find the potential V inside the sphere, $r<R$, taking $V=0$ at $r=0$. (b) What is the difference in electric potential between a point on the surface and the center of the sphere? If Q is positive, which point is at the higher potential? (c) Show that the potential at a distance r from the center, where $r>R$, is given by

$$
V=\frac{q\left(3 R^{2}-r^{2}\right)}{8 \pi \epsilon_{0} R^{2}}
$$

where the zero of potential is taken at $r>R$. Why does this result differ from that of part (a)?

