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THE FIRST LAW OF
THERMODYNAMICS

In earlier chapters we used the concept of heat,

without defining it carefully. In this chapter we explore the nature of heat in more detail. With the concepts

of work, heat, and internal energy now in hand, we return to the first law of thermodynamics—first dis-

cussed in Chapter 13—for a deeper analysis. We conclude by applying this law to a number of thermody-

namic processes, once more choosing the ideal gas as our system of interest.

23-1 HEAT: ENERGY IN TRANSIT

It is a common observation that if you place a cup of hot
coffee or a glass of ice water on a table at room tempera-
ture, the coffee will get colder and the ice water will get
warmer, the temperature of each approaching that of the
room. In each case the object will tend toward thermal
equilibrium with its environment.

We have mentioned earlier that such approaches to ther-
mal equilibrium must involve some sort of exchange of en-
ergy between the system and the environment. In Section
13-7 (which you should review) we defined the heat Q to be
the energy that is transferred, such as from the coffee to the
room or from the room to the ice water. Specifically:

Heat is energy that flows between a system and its envi-
ronment because of a temperature difference between
them.

Figure 23-1 summarizes this view. If the temperature TS of
a system is less than the temperature TE of the system’s en-
vironment, energy flows into the system as heat. We choose
our sign convention so that Q is positive in this case, which
tends to increase the internal energy Eint of the system.
Conversely, when TS � TE , energy flows out of the system
(thereby decreasing Eint), and we take Q for this case to be
negative.

Like other forms of energy, heat can be expressed in the
SI unit of joules (J). In Section 13-7 we listed the relation-
ship of the joule to other units in which heat energy is
sometimes measured.

Misconceptions about Heat
Heat is similar to work in that both represent ways of 
transferring energy. Neither heat nor work is an intrinsic
property of a system; that is, we cannot say that a system
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Figure 23-1. (a) If the temperature TS of a
system is less than the temperature TE of its envi-
ronment, heat is transferred into the system until
thermal equilibrium is established, as in (b). 
(c) If the temperature of a system is greater than
that of its environment, heat is transferred out of
the system.
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“contains” a certain amount of heat or work. Unlike proper-
ties such as pressure, temperature, and internal energy, heat
and work are not properties of the state of the system; they
are not state functions. Instead, we say that a certain
amount of energy can be transferred, either into or out of
the system, as heat or as work. Both heat and work are thus
associated with a thermodynamic process— that is, with the
interaction between the system and its environment as the
system changes from one equilibrium state to another.

As we indicated in Section 13-7, in common usage, heat
is often confused with temperature or internal energy.
When cooking instructions say, “heat at 300 degrees,” it is
temperature (on the Fahrenheit scale!) that is being dis-
cussed. We also may hear someone refer to the “heat gener-
ated” in the brake linings of a car as it is braked to a halt. In
this case, both the temperature and the internal energy of
the brake linings have increased because of frictional work
done on them. The rise in temperature of the brake linings
did not occur because heat was transferred to the brake lin-
ings from some external object at a higher temperature.
There is no such object. The only transfer of heat in this
case is from the high-temperature brake linings to their im-
mediate surroundings.

23-2 THE TRANSFER OF HEAT

We know that heat is transferred between a system and its
environment when their temperatures differ. However, we
have not yet described the mechanisms by which this trans-
fer takes place. There are three of them: thermal conduc-
tion, convection, and radiation. We will discuss each in
turn.

Thermal Conduction
If you leave a poker in a fire for a long enough time, its
handle will become hot. Energy is transferred from the fire
to the handle by thermal conduction along the metal shaft.
In metals—as we shall learn in Chapter 49— some of the
atomic electrons are free to move about within the confines
of the metallic object and thus are able to pass along in-
creases in their kinetic energy from regions of higher tem-
perature to regions of lower temperature. In this way a re-
gion of rising temperature passes along the shaft to your
hand.

Consider a thin slab of a homogeneous material of
thickness �x and area A (Fig. 23-2). One face is held at a
constant temperature T and the other at a somewhat higher
constant temperature T � �T, both temperatures being uni-
form over their respective surfaces. Consider the rate 
H (� Q/�t) at which heat is transferred through the slab.
(The SI unit for H is the joule/second, which is the watt.)
Experiment shows that H is (1) directly proportional to A—
the more area available, the more heat can be transferred
per unit time; (2) inversely proportional to �x— the thicker

the slab, the less heat will be transferred per unit time; and
(3) directly proportional to �T— the larger the temperature
difference is, the more heat will be transferred.

We can summarize these experimental findings as

(23-1)

in which the proportionality constant k is called the thermal
conductivity of the material. The SI unit of k is the watt per
meter kelvin (W/m � K).

Table 23-1 shows some values of k for selected sub-
stances. A substance with a large value of k is a good ther-
mal conductor; one with a small value of k is a poor ther-
mal conductor or, equivalently, a good thermal insulator.
Figure 23-3 shows a patio in which concrete slabs are sepa-
rated by fir strips. As Table 23-1 shows, the thermal con-
ductivity of concrete is more than five times that of fir; heat
conduction from the (warmer) ground through the concrete

H � kA
�T

�x
,
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Figure 23-2. Heat Q flows through a rectangular slab of ma-
terial of thickness �x and area A.

Temperature
T + ∆T

∆x

Q

Area A
Temperature T

Conductivity, k R-Value
Material (W/m K) (ft2 F° h/Btu)

Metals
Stainless steel 14 0.010
Lead 35 0.0041
Aluminum 235 0.00061
Copper 401 0.00036
Silver 428 0.00034

Gases
Air (dry) 0.026 5.5
Helium 0.15 0.96
Hydrogen 0.18 0.80

Building materials
Polyurethane foam 0.024 5.9
Rock wool 0.043 3.3
Fiberglass 0.048 3.0
Fir 0.14 1.0
Concrete 0.80 0.18
Window glass 1.0 0.14

a Values are for room temperature. Note that values of k are given in SI
units and those of R in the customary British units. The R-values are for a
1-in. slab.

���

Table 23-1 Some Thermal Conductivities and 
R-Valuesa



and the fir to the (cooler) air causes the snow above the
concrete to melt first.

In choosing building materials, one often finds them
rated in terms of the thermal resistance or R-value, defined
by

(23-2)

where L is the thickness of the material through which the
heat is transfered. Thus the lower the conductivity is, the
higher is the R-value: good insulators have high R-values.
Numerically, the R-value is evaluated according to Eq. 23-2
expressed in the British units of ft2 � F°� h/Btu. The R-value
is determined for a certain thickness of material. For exam-
ple, a 1-in. thickness of fiberglass has whereas a 
1-in. thickness of wood has (and therefore conducts
heat at three times the rate of fiberglass). One inch of air
has but air is a poor thermal insulator because it can
transfer more heat by convection, and the thermal conduc-
tivity is thus not a good measure of the insulating value of
air. Table 23-1 shows the R-values of one-inch slabs of
some materials.

Now let us consider two applications of Eq. 23-1. We
first take the case of a long rod of length L and uniform
cross section A (Fig. 23-4a), in which one end is main-
tained at the high temperature TH and the other end at the
low temperature TL .* We call this a steady state situation:

R � 5,

R � 1
R � 3,

R �
L

k
,

the temperatures and the rate of heat transfer are constant in
time. In this situation, every increment of energy that enters
the rod at the hot end leaves it at the cold end. Put another
way, through any cross section along the length of the rod,
we would measure the same rate of heat transfer.

For this case, we can write Eq. 23-1 as

(23-3)

Here L is the thickness of the material in the direction of
heat transfer. The rate of heat flow H is a constant, and the
temperature decreases in linear fashion between the ends of
the rod (Fig. 23-4b).

We now consider the case in which the slab has infini-
tesimal thickness dx and temperature difference dT between
its faces. In this limit, we obtain

(23-4)

The derivative dT/dx is called the temperature gradient. We
choose the positive direction of the variable x in Eq. 23-4 to
be the direction in which heat is transferred. Because heat
flows in the direction of decreasing temperature, the gradi-
ent dT/dx is inherently negative. We introduce a minus sign
into Eq. 23-4 to ensure that H, the rate of heat transfer, will
be a positive quantity.

Equation 23-4 is particularly applicable in cases where
the cross section of the material through which heat is be-
ing transferred is not uniform. Sample Problem 23-2 is an
illustrative example.

Sample Problem 23-1. Consider a compound slab
consisting of two materials having different thicknesses, L1 and
L2 , and different thermal conductivities, k1 and k2 . If the tempera-
tures of the outer surfaces are T1 and T2 (with find the
rate of heat transfer through the compound slab (Fig. 23-5) in a
steady state.

T2 � T1),

H � �kA
dT

dx
.

H � kA
TH � TL

L
.
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Figure 23-3. Snow melts on the concrete, but not on the fir
strips between the concrete sections, because concrete is a better
thermal conductor than wood.

* The ends of the rod can be considered to be immersed in thermal reser-
voirs, which can supply or absorb an unlimited amount of heat while
maintaining a constant temperature. A thermal reservoir might be a mater-
ial of such large quantity or ability to absorb heat that the heat flowing to
or from the rod makes a negligible difference in its temperature. Or it
might be a mixture of steam and water maintained at the boiling point or
ice and water at the melting point, so that the heat absorbed causes a
change in phase but no change in temperature. Other possibilities for ther-
mal reservoirs include furnaces or refrigerators in which the heat is ulti-
mately converted to or from mechanical work while keeping the tempera-
ture fixed.
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Figure 23-4. (a) Conduction of heat through an insulated
conducting rod. (b) The variation of temperature along the rod.



Solution Let Tx be the temperature at the interface between the
two materials. Then the rate of heat transfer through slab 2 is

and that through slab 1 is

In a steady state so that

Let H be the rate of heat transfer (the same for all sections). Then,
solving for Tx and substituting into either of the equations for H1

or H2 , we obtain

The extension to any number of sections in series is

(23-5)

Sample Problem 23-2. A thin, cylindrical metal pipe
is carrying steam at a temperature of The pipe has a
diameter of 5.4 cm and is wrapped with a thickness of 5.2 cm of
fiberglass insulation. A length m of the pipe passes
through a room in which the temperature is (a) At
what rate does heat energy pass through the insulation? (b) How
much additional insulation must be added to reduce the heat trans-
fer rate by half?

Solution (a) Figure 23-6 illustrates the geometry appropriate to
the calculation. In the steady state, the rate of heat transfer H will
be constant and will be the same for every thin cylindrical shell,
such as the one indicated by the dashed lines in Fig. 23-6. We can
regard this shell as a slab of material, having a thickness dr and an
area of 2�rD. Applying Eq. 23-4 to this geometry, we have

or

H
dr

r
� �2�kD dT.

H � �kA
dT

dr
� �k(2�rD) 

dT

dr

TR � 11	C.
D � 6.2

TS � 100	C.

H �
A(T2 � T1)


 (Ln /kn)
�

A(T2 � T1)


 Rn

.

H �
A(T2 � T1)

(L1 /k 1) � (L2 /k 2)
�

A(T2 � T1)

R1 � R2
.

k 2 A(T2 � Tx)

L2
�

k 1 A(Tx � T1)

L1
.

H2 � H1 ,

H1 �
k 1 A(Tx � T1)

L1
.

H2 �
k 2 A(T2 � Tx)

L2

We assume that the thin metal pipe is at the temperature of the
steam, so it does not enter into the calculation. We integrate from
the inner radius r1 of the insulation at temperature TS to the outer
radius r2 at temperature TR :

Removing the constant H from the integral on the left and carry-
ing out the integrations, we obtain

Solving for H and inserting the numerical values, we find

Note that, if we had not inserted a minus sign into Eq. 23-4, the
algebraic sign of H would not have been positive.
(b) To reduce the heat transfer rate by half, we must increase r2 to
the value r�2 such that the denominator in the above expression for
H becomes twice as large; that is,

Solving for r�2 , we find

Thus we need nearly four times the thickness of insulation to re-
duce the heat transfer by half! This effect is due to the increase in
the area, and therefore in the mass, contained in each thin slab as
we increase the radius in the cylindrical geometry. There is more
material available to conduct heat at the outer radii, and we must
therefore supply an increasing amount of insulation as r grows
larger. This differs from the linear geometry, in which the heat
transferred decreases linearly as the insulation thickness increases.
In the spherical geometry (which might be appropriate to calculat-
ing the heat energy transferred from the Earth’s core to its sur-
face), the calculation is still different; see Problem 3.

r�2 �
r 2

2

r1
�

(7.9 cm)2

2.7 cm
� 23 cm.

ln(r�2 /r1)

ln(r2 /r1)
� 2.

�
2� (0.048 W/m�K)(6.2 m)(89 K)

ln(7.9 cm/2.7 cm)
� 155 W.

H �
2�kD(TS � TR)

ln(r2 /r1)

H ln 
r2

r1
� �2�kD(TR � TS) � 2�kD(TS � TR).

�r2

r1

H
dr

r
� �2�kD �TR

TS

dT.
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Heat

k2 k1

T2 T1Tx

L2 L1

Figure 23-5. Sample Problem 23-1. Conduction of heat
through two layers of matter with different thermal conductivities.

Figure 23-6. Sample Problem 23-2. The inner surface (radius
r1) of the insulation on a cylindrical pipe is at the temperature TS

and the outer surface (radius r2) is at TR . The same heat Q flows
through every cylindrical shell of insulation, such as the intermedi-
ate one of thickness dr and radius r shown by the dashed lines.

r1

r2

r

D

Q

dr

Temperature TS Temperature TR



Convection
If you look at the flame of a candle or a match, you are
watching heat energy being transported upward by 
convection. Heat transfer by convection occurs when a
fluid, such as air or water, is in contact with an object
whose temperature is higher than that of its surroundings.
The temperature of the fluid that is in contact with the 
hot object increases, and (in most cases) the fluid ex-
pands. The warm fluid is less dense than the surrounding
cooler fluid, so it rises because of buoyant forces; see Fig.
23-7. The surrounding cooler fluid falls to take the place
of the rising warmer fluid, and a convective circulation is
set up.

Atmospheric convection plays a fundamental role in
determining the global climate patterns and in our daily
weather variations. Glider pilots and condors alike seek
the convective thermals that, rising from the warmer Earth
beneath, keep them aloft. Huge energy transfers take place
within the oceans by the same process. The outer region
of the Sun, called the photosphere, contains a vast array 
of convection cells that transport energy to the solar 
surface and give the surface a granulated appearance. 
Finally, there are thought to be huge convective cells
within the mantle of the Earth, their outermost surfaces
being the tectonic plates whose motions move the conti-
nents.

We have so far been describing free or natural con-
vection. Convection can also be forced, as when a fur-
nace blower causes air circulation to heat the rooms of a
house.

Radiation
Energy is carried from the Sun to us by electromagnetic
waves that travel freely through the near vacuum of the in-
tervening space. If you stand near a bonfire or an open fire-
place, you are warmed by the same process. All objects
emit such electromagnetic radiation because of their tem-
perature and also absorb some of the radiation that falls on
them from other objects. The higher the temperature of an
object is, the more it radiates. We shall see in Chapter 45 of
this text that the energy radiated by an object is propor-
tional to the fourth power of its (Kelvin) temperature. The
average temperature of our Earth, for example, levels off at
about 300 K because at that temperature the Earth radiates
energy into space at the same rate that it receives it from the
Sun; see Fig. 23-8.

23-3 THE FIRST LAW OF
THERMODYNAMICS

In Chapter 13 we discussed the fundamental concept of
conservation of energy in a system of particles. As we did
in the case of conservation of momentum in Chapter 7, we
concentrated our attention on a particular collection of par-
ticles or objects that we defined as our system. We drew an
imaginary boundary that separated the system from its envi-
ronment, and then we carefully accounted for all interac-
tions between the system and its environment. Sometimes,
as in the case of momentum conservation, we characterize
those interactions in terms of forces. Other times it is more
convenient to characterize those interactions in terms of en-
ergy transfer.

We are free to define our system in any convenient way,
as long as we are consistent and can account for all energy
transfers to or from the system. For example, we might de-
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Figure 23-7. Air rises by convection around a heated cylin-
der. The dark areas represent regions of uniform temperature.

Radiation from
the Earth

Solar
radiation

T
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0 
K
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Figure 23-8. Solar radiation is intercepted by the Earth and
is (mostly) absorbed. The temperature TE of the Earth adjusts it-
self to a value at which the Earth’s heat loss by radiation is just
equal to the solar heat that it absorbs.



fine the system to be a block of metal that is at a lower tem-
perature than its environment, so that the interaction in-
volves a transfer of heat from the environment to the block.
Or we might define a system to be water and ice that are
mixed together in an insulated container. In this case there
is an exchange of energy within the system but no interac-
tion with the environment.

For a thermodynamic system, in which internal energy
is the only type of energy the system may have, the law of
conservation of energy may be expressed as

(23-6)

In this section we examine this equation, which is a state-
ment of the first law of thermodynamics. In this equation:

Q is the energy transferred (as heat) between the system
and its environment because of a temperature difference
between them. A heat transfer that occurs entirely
within the system boundary is not included in Q.

W is the work done on (or by) the system by forces that
act through the system boundary. Work done by forces
that act entirely within the system boundary is not in-
cluded in W.

�Eint is the change in the internal energy of the system
that occurs when energy is transferred into or out of the
system as heat or work.

By convention we have chosen Q to be positive when heat
is transferred into the system and W to be positive when
work is done on the system. With these choices, positive
values of Q and W each serve to increase the internal en-
ergy of the system.*

Equation 23-6 is a restricted form of the general law of
conservation of energy. For example, the system as a whole
may be in motion in our frame of reference. That is, there
may be kinetic energy associated with the motion of the
center of mass of the system. If that were the case, we
would have to add a term �Kcm to the right side of Eq. 23-
6. However, in the systems we discuss the center of mass of

Q � W � �Eint .

the system will always be at rest in our reference frame so
that no such term is needed.

Figure 23-9 suggests how Eq. 23-6 is to be applied. The
system starts in an initial equilibrium state i in Fig. 23-9a,
in which the properties of the system, such as its internal
energy Eint , have definite constant values. We then permit
the system to undergo a thermodynamic process— that is,
to interact with its environment as in Fig. 23-9b—during
which work may be done and/or heat energy exchanged.
When the process is concluded, the system ends up in a fi-
nal equilibrium state f, in which the properties of the sys-
tem will, in general, have different constant values.

There are many processes by which we can take a sys-
tem from a specified initial state to a specified final state. In
general, the values of Q and W will differ, depending on the
process we choose. However, experiment shows that, al-
though Q and W may differ individually, their sum 
is the same for all processes that connect the given initial
and final states. As Eq. 23-6 suggests, this is the experimen-
tal basis for regarding the internal energy Eint as a true state
function— that is, as just as much an inherent property of a
system as pressure, temperature, and volume. To stress this
point of view, we can express the first law of thermodynam-
ics formally in these words:

In any thermodynamic process between equilibrium
states i and f, the quantity Q � W has the same value
for any path between i and f. This quantity is equal to
the change in value of a state function called the inter-
nal energy Eint .

The first law of thermodynamics is a general result that is
thought to apply to every process in nature that proceeds
between equilibrium states. It is not necessary that every
stage of the process be an equilibrium state, only the initial
and the final states. For example, we can apply the first law
to the explosion of a firecracker in an insulated steel drum.
We can account for the energy balance before the explosion
and after the system has returned to equilibrium, and for
this calculation we need not worry that the intermediate
condition is turbulent and that pressure and temperature are
not well defined.

Because of its generality, the first law is somewhat in-
complete as a description of nature. It tells us that energy
must be conserved in every process, but it does not tell us
whether any particular process that conserves energy can

Q � W
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Process Final state
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Boundary

* Some authors define work done by the system to be positive, in which
case the first law would be written We have chosen to de-
fine work done on the system to be positive, so that thermodynamic work
will have the same sign convention that we used in earlier chapters for me-
chanical work.

Q � W � �Eint .

Figure 23-9. (a) A system in an initial
state in equilibrium with its surroundings.
(b) A thermodynamic process during which
the system may exchange heat Q or work W
with its environment. (c) A final equilibrium
state reached as a result of the process.



actually occur. The explosion of a firecracker, for example,
releases chemical energy stored in the gunpowder that
eventually raises the temperature of the gas in the drum. We
can imagine the hot gas giving its thermal energy back to
the combustion products, turning them once again into gun-
powder and reassembling the firecracker, but this never
happens. Conservation of energy works either way but na-
ture seems to go in a preferred direction. The second law of
thermodynamics, which we discuss in Chapter 24, accounts
for this distinction.

In thermal physics as in mechanics, you must be quite
clear as to the system to which you are applying fundamen-
tal laws such as Eq. 23-6. Figure 23-10, for example, shows
a heating coil immersed in water contained in an insulated
bucket. The current through the coil is supplied by an
(ideal) generator that is driven by a weight that falls with
constant speed. Let us see what values of Q, W, and �Eint

result for different arbitrary choices of what we choose to
call our system:

1. System � water alone. Heat is delivered to the water
from the coil so that No work is done because the
water does not move under the influence of any external
force that acts on it. Thus From the first law, then
(Eq. 23-6) �Eint � 0. The heat delivered to the water
causes its internal energy, and thus its temperature, to rise.

2. System � coil � weight. As long as the weight is
falling at a constant rate the coil maintains a constant tem-
perature. Thus the system is in a steady state, with no en-
ergy transfers occurring within the system boundary. Thus
�Eint � 0. Heat energy is transferred from coil to water out
of this system, so that Work is done by the (exter-
nal) gravitational force so that The system acts as a
conduit for energy, the work done by the gravitational force
being delivered as heat energy to the water.

W � 0.
Q � 0.

W � 0.

Q � 0.

3. System � coil � weight � water. Here the gravita-
tional force does work on this system so that The in-
sulation of the bucket prevents heat transfer to the environ-
ment so that From Eq. 23-6 then, �Eint � 0. Again,
work done by an external force produces an increase in the
internal energy, and thus the temperature, of the system.

4. System � coil � weight � water � Earth. In this
case the gravitational force is internal to the system so that

Also, as for system choice 3 above. From
Eq. 23-6 then, we must have �Eint � 0. The internal energy
of part of the system rises because of the rise in tempera-
ture of the water. However, the internal energy of another
part of the system falls—and by the same amount—be-
cause the falling weight and the Earth move closer together,
thus reducing their potential energy.

The lesson to learn from this analysis is to define your
system carefully and stay with that definition throughout
your analysis.

23-4 HEAT CAPACITY AND
SPECIFIC HEAT

We can change the state of a body by transferring energy to
or from it in the form of heat, or by doing work on the
body. One property of a body that may change in such a
process is its temperature T. The change in temperature �T
that corresponds to the transfer of a particular quantity of
heat energy Q will depend on the circumstances under
which the heat was transferred. For example, in the case of
a gas confined to a cylinder with a movable piston, we can
add heat and keep the piston fixed (thus keeping the volume
constant), or we can add heat and allow the piston to move
but keep the force on the piston constant (thus keeping the
gas under constant pressure). We can even change the tem-
perature by doing work on a system, such as by rubbing to-
gether two objects that exert frictional forces on one an-
other; in this case, no heat transfer need occur.

It is convenient to define the heat capacity C of a body
as the ratio of the amount of heat energy Q transferred to a
body in any process to its corresponding temperature
change �T; that is,

(23-7)

The word “capacity” may be misleading because it suggests
the essentially meaningless statement “the amount of heat a
body can hold,” whereas what is meant is simply the energy
per degree of temperature change that is transferred as heat
when the temperature of the body changes.

The heat capacity per unit mass of a body, called spe-
cific heat capacity or usually just specific heat, is character-
istic of the material of which the body is composed:

(23-8)c �
C

m
�

Q

m �T
.

C �
Q

�T
.

Q � 0,W � 0.

Q � 0.

W � 0.
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Generator

Weightm

Current

Water

Insulation

Figure 23-10. A heating coil is immersed in water, the elec-
tric current through the coil being provided by an (ideal) generator
that is driven by a falling weight. Values of Q, W, and �Eint in Eq.
23-6 depend critically on what parts of this arrangement we
choose to define as the “system.”



The heat capacity is characteristic of a particular object, but
the specific heat characterizes a substance. Thus we speak,
on one hand, of the heat capacity of a copper pot but, on the
other, of the specific heat of copper.

Neither the heat capacity of a body nor the specific heat
of a material is constant; both depend on the temperature
(and possibly on other variables as well, such as the pres-
sure). The previous equations give only average values for
these quantities in the temperature range of �T. In the limit,
as we can speak of the specific heat at a particular
temperature T.

We can find the heat that must be given to a body of
mass m, whose material has a specific heat c, to increase its
temperature from initial temperature Ti to final temperature
Tf by dividing the temperature change into N small intervals
�Tn , assuming that cn is constant in each small interval,
and summing the contributions to the total heat transfer
from all intervals 2, . . . , N. This gives

(23-9)

In the differential limit this becomes

(23-10)

where c may be a function of the temperature. At ordinary
temperatures and over ordinary temperature intervals, spe-
cific heats can be considered to be constants. For example,
the specific heat of water varies by less than 1% over the in-
terval from 0°C to 100°C. We can therefore write Eq. 23-10
in the more generally useful form

(23-11)Q � mc(Tf � Ti).

Q � m �Tf

Ti

c dT,

Q � �
N

n�1
mcn �Tn .

n � 1,

�T : 0,

Equation 23-8 does not define specific heat uniquely.
We must also specify the conditions under which the heat Q
is added to the material. One common condition is that the
specimen remain at normal (constant) atmospheric pressure
while we add the heat, but there are many other possibili-
ties, each leading, in general, to a different value for c. To
obtain a unique value for c we must indicate the conditions,
such as specific heat at constant pressure cp , specific heat at
constant volume cV, and so on.

Table 23-2 shows values for the specific heat capacities
of a number of common substances, measured under condi-
tions of constant pressure. Although the units are expressed
in terms of K, we can also work with temperatures in °C,
because a temperature difference in C° is equal to the same
temperature difference in K.

Sample Problem 23-3. A cube of copper of mass
75 g is placed in an oven at a temperature of 

until it comes to thermal equilibrium. The cube is then dropped
quickly into an insulated beaker containing a quantity of water of
mass The heat capacity of the beaker alone is

Initially the water and the beaker are at a tempera-
ture of What is the final equilibrium temperature Tf

of the system consisting of the copper � water � beaker?

Solution Once the copper cube has been dropped into the beaker,
no energy enters or leaves the system copper � water � beaker,
either as heat or as work, so that there is no change in the internal
energy of this system. However, there are changes in the internal
energies of the three objects—which we now regard as
subsystems— that make up the system. These three internal en-
ergy changes must add up to zero, or

However, for each object (because no work is done on any
object) so that, from Eq. 23-6, we must have

(23-12)

From Eqs. 23-7 and 23-11, the heat transfers for these subsystems
are:

Note that we have written the temperature differences as the final
temperature minus the initial temperature, so that Qw and Qb are
positive (indicating that heat energy is transferred into the water
and beaker subsystems, thus increasing their internal energies) and
Qc is negative (indicating that heat energy is transferred from this
subsystem, corresponding to a decrease in its internal energy).
Substituting these heat transfers into Eq. 23-12 above, we obtain

Solving for Tf and substituting, we have

�

� 19.6	C. 

(0.220 kg)(4190 J/kg �K)(12	C) � (190 J/K)(12	C) � (0.075 kg)(387 J/kg�K)(312	C)

(0.220 kg)(4190 J/kg �K) � 190 J/K � (0.075 kg)(387 J/kg �K)

Tf �
mwcwTi � CbTi � m cccT0

mwcw � Cb � m ccc

mwcw(Tf � Ti) � Cb(Tf � Ti) � mccc(Tf � T0) � 0.

Beaker:  Qb � Cb(Tf � Ti) 
Water:  Qw � mwcw(Tf � Ti)
Copper: Qc � mccc(Tf � T0) 

Qc � Qw � Qb � 0.

W � 0

�Eint, c � �Eint, w � �Eint, b � 0.

Ti � 12.0	C.
Cb � 190 J/K.

mw � 220 g.

T0 � 312	Cm c �
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Specific Molar
Heat Capacity Heat Capacity

Substance (J/kg K) (J/mol K)

Elemental solids
Lead 129 26.7
Tungsten 135 24.8
Silver 236 25.5
Copper 387 24.6
Carbon 502 6.02
Aluminum 900 24.3

Other solids
Brass 380
Granite 790
Glass 840
Ice (�10°C) 2220

Liquids
Mercury 139
Ethyl alcohol 2430
Seawater 3900
Water 4190

a Measured at room temperature and atmospheric pressure, except where
noted.

��

Table 23-2 Heat Capacities of Some Substancesa



Note that, because all temperatures were part of temperature dif-
ferences, we can use °C in this expression. In most thermody-
namic expressions, however, only Kelvin temperatures can be
used.

From the given data you can show that

The algebraic sum of these three heat transfers is indeed zero, as
Eq. 23-12 requires.

Heats of Transformation
When heat enters a solid or a liquid, the temperature of
the sample does not necessarily rise. Instead, the sample
may change from one phase or state (that is, solid, liq-
uid, or gas) to another. Thus ice melts and water boils,
absorbing heat in each case without a temperature change.
In the reverse processes (water freezes, steam condenses),
heat is released by the sample, again at a constant temper-
ature.

The amount of heat per unit mass that must be trans-
ferred to produce a phase change is called the heat of trans-
formation or latent heat (symbol L) for the process. The to-
tal heat transferred in a phase change is then

(23-13)

where m is the mass of the sample that changes phase. The
heat transferred during melting or freezing is called the
heat of fusion (symbol Lf), and the heat transferred during
boiling or condensing is called the heat of vaporization
(symbol Lv). Table 23-3 shows the heats of transformation
of some substances.

Knowledge of heat capacities and heats of transforma-
tion is important because we can measure a heat transfer by
determining either the temperature change of a material of
known heat capacity or the amount of a substance of known
heat of transformation converted from one phase to another.
For example, in low-temperature systems involving liquid
helium at 4 K, the rate at which helium gas boils from the
liquid gives a measure of the rate at which heat enters the
system.

Q � Lm,

Qw � 7010 J, Qb � 1440 J, and Qc � �8450 J.

Heat Capacities of Solids
Recall that the specific heat capacity of any material (SI
unit: J/kg � K) is the heat capacity per unit mass. In Table
23-2 we see that the values of this quantity vary widely
from one solid material to another. If we multiply the spe-
cific heat capacity by the molar mass M we obtain the mo-
lar heat capacity (SI unit: J/mol � K) or the heat capacity
per mole. Table 23-2 shows that, with few exceptions (see
carbon) the molar heat capacities of all solids have values
close to 25 J/mol � K. This remarkable experimental obser-
vation was first pointed out in 1819 by the French scientists
P. L. Dulong (1785–1838) and A. T. Petit (1791–1820).

In comparing molar heat capacities, we are, in effect,
comparing samples that contain the same number of moles
rather than samples that have the same mass. Samples with
the same number of moles have the same number of atoms,
and we conclude that the heat energy required per atom to
raise the temperature of a solid by a given amount seems—
with a few exceptions— to be about the same for all solids.
This is striking evidence for the atomic theory of matter.

Actually, molar heat capacities vary with temperature,
approaching zero as and approaching the so-called
Dulong–Petit value only at relatively high temperatures.
Figure 23-11 shows the variation for lead, aluminum, and
carbon. The low value of the molar heat capacity for carbon
listed in Table 23-2 occurs because, at room temperature,
carbon has not yet achieved its limiting value.*

T : 0
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Melting Heat of Boiling Heat of
Point Fusion Point Vaporization

Substancea (K) (kJ/kg) (K) (kJ/kg)

Hydrogen 14.0 58.6 20.3 452
Oxygen 54.8 13.8 90.2 213
Mercury 234 11.3 630 296
Water 273 333 373 2256
Lead 601 24.7 2013 858
Silver 1235 105 2485 2336
Copper 1356 205 2840 4730

a Substances are listed in order of increasing melting points.

Table 23-3 Some Heats of Transformation

Figure 23-11. The molar heat capacity of three elements as
a function of temperature. At high temperatures, the heat capaci-
ties of all solids approach the same limiting value. For lead and
aluminum, that value is nearly reached at room temperature; for
carbon it is not.

* The data plotted in Fig. 23-11 are the molar heat capacities at constant
volume. It is almost impossible to keep a solid from expanding as you in-
crease its temperature so the direct measurements of molar heat capacity
are made under conditions of constant pressure. The constant-volume val-
ues plotted in the figure are found by making a small theory-based correc-
tion to the measured constant-pressure values.
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We will learn in Section 23-6 that the Dulong–Petit
high-temperature limit for the molar heat capacity can be
understood on the basis of classical physics. However, to
understand the complete temperature variation of the molar
heat capacity requires an analysis based on quantum
physics. Einstein was quick to realize that measurements of
the molar heat capacity provide a sensitive probe of the
manner in which atoms absorb energy—a matter of deep
significance. Understanding the temperature variation of the
molar heat capacities of solids was the first problem to
which Einstein turned his attention after the introduction of
quantum theory, and he provided a preliminary but insight-
ful solution in 1906.*

The data plotted in Fig. 23-11 vary smoothly and char-
acterize materials that do not change their state in that tem-
perature range. That is, they do not melt or change from
one crystal structure to another. Measurements of heat ca-
pacity are useful in studying such changes. For example,
Fig. 23-12a shows the variation of the molar heat capacity
of tantalum for temperatures in the range 3–5.5 K. It seems
likely that something is happening to tantalum at K
and indeed it is. Above that temperature, tantalum conducts
electricity in the same way that copper and other familiar
electrical conductors do. Below that temperature, however,

T � 4.4

the electrical resistance of tantalum completely disappears;
it becomes a so-called superconductor.

For another example, Fig. 23-12b shows the specific heat
capacity of brass in the range 300–600°C. X-ray analysis
shows that a change in the crystal structure of brass occurs
at about 460°C, from a very ordered structure below that
temperature to a rather disordered structure above it.

23-5 WORK DONE ON OR BY
AN IDEAL GAS

So far in this chapter we have explored energy transfers as
heat in relation to the first law of thermodynamics. In this
section we explore energy transfers as work and—as we
have done before—we choose the ideal gas as our thermo-
dynamic system of interest. The stylized apparatus of Fig.
21-13 suggests how work might be done either on an ideal
gas or by it under various conditions.

If we increase the temperature of the gas in the cylinder
of Fig. 21-13, the gas expands and raises the piston against
gravity; the gas does (positive) work on the piston. The up-
ward force exerted on the piston by the gas due to its pres-
sure p is given by pA, where A is the area of the piston. By
Newton’s third law, the force exerted on the gas by the pis-
ton is equal and opposite to the force exerted on the piston
by the gas. Using Eq. 11-14, we can therefore write the
work W done on the gas as

(23-14)

Here dx represents the displacement of the piston, and the
minus sign enters because the force exerted on the gas by
the piston is in a direction opposite to the displacement of
the piston. If we reduce the temperature of the gas, it con-
tracts instead of expanding; the work done on the gas in
that case is positive. We assume that the process described
by Eq. 23-14 is carried out slowly, so that the gas can be
considered to be in thermal equilibrium at all intermediate
stages. Otherwise, the pressure would not be clearly defined
during the process, and the integral in Eq. 23-14 could not
easily be evaluated.

We can write Eq. 23-14 in a more general form that
turns out to be very useful. If the piston moves through a
distance dx, then the volume of the gas changes by an
amount Thus the work done on the gas is

(23-15)

The integral is carried out between the initial volume Vi and
the final volume Vf .

Equation 23-15 is the most general result for the work
done on a gas. It makes no reference to the outside agent that
does the work; it states simply that the work done on the gas
can be calculated from the pressure and the change in vol-
ume of the gas itself. Note that the algebraic sign of the work
is implicitly contained in Eq. 23-15; if the gas expands, dV is

W � �� p dV.

dV � A dx.

W � � Fx dx � � (�pA)dx.
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* Details of Einstein’s calculation can be found in Modern Physics, by
Kenneth S. Krane (Wiley, 1996), Chapter 10.

Figure 23-12. (a) The molar heat capacity of tantalum near
its superconducting transition temperature. (b) The specific heat
capacity of brass.
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positive and W is negative, p being a scalar quantity having
only positive values. Conversely, if the gas is compressed, dV
is negative and the work done on the gas is positive.

Equation 23-15 is analogous to the general result for the
work done on a system by a variable force F. You will re-
call from Fig. 11-12 that if we plot F against x, the work
done by F is simply the area under the curve between xi and
xf . Figure 23-13 shows the similar situation for the work
done on the gas. A graph in the form of Fig. 23-13 is called
a pV diagram, with p plotted on the vertical axis (like F)
and V plotted on the horizontal axis (like x). The magnitude
of the work done on the gas is equal to the area under the
curve representing the process on a pV diagram. The sign
of W is determined according to whether (in which
case W is negative, as in Fig. 23-13), or (in which
case W is positive). Once again, the work done on the gas is
negative if the process increases the volume of the gas and
positive if the process reduces the volume of the gas.

The pressure force is clearly nonconservative, as Fig.
23-14 demonstrates. Let us suppose we wish to take our
ideal gas from the initial conditions Vi and pi (point A) to
the final conditions Vf and pf (point D). There are many dif-
ferent paths we can take between A and D, of which two are
shown in Fig. 23-14. Along path 1 (ABD), we first increase
the pressure from pi to pf at constant volume. (We might
accomplish this by turning up the control knob on the ther-
mal reservoir, increasing the temperature of the gas, while
we simultaneously add just the right amount of additional
weight to the piston to keep it from moving.) We then fol-

Vf � Vi

Vf � Vi

low path BD by increasing the temperature but adding no
additional weight to the piston, so that the pressure remains
constant at the value pf while the volume increases from Vi

to Vf . The work done in this entire procedure is the area of
the rectangle BDFE (the area below the line BD).

We can find W1 , the work done on the gas along path 1,
by considering the work done along the two segments AB
and BD:

Because the volume is constant along AB, it follows from
Eq. 23-15 that Along BD, the pressure is constant
(at the value pf) and comes out of the integral. The result is

To follow path 2 (ACD), we first increase the tempera-
ture while holding the pressure constant at pi (that is,
adding no additional weight to the piston), so that the vol-
ume increases from Vi to Vf . We then increase the pressure
from pi to pf at the constant volume Vf by increasing the
temperature and adding weight to the piston to keep it from
moving. The work done in this case is the area under the
line AC or the rectangle ACFE. We can compute this as

Clearly and the work depends on the path.
We can perform a variety of operations on the gas and

evaluate the work done in each case.

Work Done at Constant Volume
The work is zero for any process in which the volume re-
mains constant (as in segments AB and CD in Fig. 23-14):

(23-16)

We deduce directly from Eq. 23-15 that if V is con-
stant. Note that it is not sufficient that the process start and
end with the same volume; the volume must be constant
throughout the process for the work to vanish. For example,
consider process ACDB in Fig. 23-14. The volume starts
and ends at Vi , but the work is certainly not zero. The work
is zero only for vertical paths such as AB, representing a
process at constant volume.

Work Done at Constant Pressure
Here we can easily apply Eq. 23-15, because the constant p
comes out of the integral:

(23-17)� �p(Vf � Vi) (constant p).

W � �p � dV

W � 0

W � 0 (constant V ).

W1  W2 ,

� �� p dV � 0 � �pi �Vf

Vi

dV � �pi(Vf � Vi).

W2 � WAC � WCD

� 0 � � p dV � �pf �Vf

Vi

dV � �pf (Vf � Vi).

W1 � WAB � WBD

WAB � 0.

W1 � WAB � WBD .
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p

Vi Vf

V

W

Figure 23-13. The magnitude of the work W done on a gas
by a process of arbitrarily varying pressure is equal to the area un-
der the pressure curve on a pV diagram between the initial volume
Vi and the final volume Vf .

Figure 23-14. A gas is taken from the pressure and volume
at point A to the pressure and volume at point D along two differ-
ent paths, ABD and ACD. Along path 1 (ABD) the work is equal to
the area of the rectangle BDFE, whereas along path 2 (ACD) the
work is equal to the area of the rectangle ACFE.
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Examples are the segments AC and BD in Fig. 23-14. Note
that the work done on the gas is negative for both of these
segments, because the volume increases in both processes.

Work Done at Constant Temperature
In the gas expands or contracts at constant temperature, the
relationship between p and V, given by the ideal gas law

is

On a pV diagram, the plot of the equation is
exactly like a plot of the equation on an xy
coordinate system: it is a hyperbola, as shown in Fig. 23-15.

A process done at constant temperature is called an
isothermal process, and the corresponding hyperbolic curve
on the pV diagram is called an isotherm. To find the work
done on a gas during an isothermal process, we use Eq. 23-
15, but we must find a way of carrying out the integral
when p varies. To do this we use the ideal gas equation of
state to write and thus

where the last step can be made because we are taking T to
be a constant. Carrying out the integral, we find

(23-18)

Note that this is also negative whenever (ln x is
positive for and positive whenever 

Work Done in Thermal Isolation
Let us remove the gas cylinder in Fig. 21-13 from contact
with the thermal reservoir and rest it on a slab of insulating
material. The gas will then be in complete thermal isolation
from its surroundings; if we do work on it, its temperature

Vf � Vi .x � 1)
Vf � Vi

W � �nRT ln 
Vf

Vi
(constant T ).

W � ��Vf

Vi

p dV � ��Vf

Vi

nRT

V
dV � �nRT �Vf

Vi

dV

V
,

p � nRT/V,

xy � constant
pV � constant

pV � constant.
( pV � nRT ),

will change, in contrast to its behavior when it was in con-
tact with the thermal reservoir. A process carried out in
thermal isolation is called an adiabatic process.

If we allow the gas to change its volume with no other
constraints, we state—and we will derive it in Section 23-
8— that the path it will follow is represented on a pV dia-
gram by the parabola-like curve

(23-19)

as shown in Fig. 23-16. The dimensionless parameter �,
called the ratio of specific heats, must be determined by ex-
periment for any particular gas. Its values are typically in
the range 1.1–1.8. Because � is greater than 1, the curve

constant is a bit steeper than the curve con-
stant at any point at which they intersect. As Fig. 23-16
shows, this means that the work done by the gas in expand-
ing adiabatically from Vi to Vf will be somewhat smaller in
magnitude than the work done in expanding isothermally
between these same two volumes.

We can find the “constant” in Eq. 23-19 if we know �
and also the pressure and volume at any particular point on
the curve. If we choose the initial point pi , Vi in Fig. 23-16,
the “constant” has the value piVi

� and we can write Eq. 23-
19 as

or

(23-20)

We can now find the adiabatic work:

� �
piVi

�

� � 1
 (Vi

1�� � Vf
1��). 

� ��Vf

Vi

piVi
�

V �
dV � �piVi

� �Vf

Vi

dV

V �

W � ��Vf

Vi

p dV

p �
piVi

�

V �
.

pV � � piVi
�

pV �pV � �

pV � � constant,
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Figure 23-15. A process done at constant temperature
(isothermal process) is represented by a hyperbola on a pV dia-
gram. The work done in changing the volume is equal to the area
under the curve between Vi and Vf .

Figure 23-16. An adiabatic process is represented on a pV
diagram by the hyperbola-like curve constant. The work
done in changing the volume is equal to the area under the curve
between Vi and Vf . Because � � 1, the adiabatic curve has a
steeper negative slope than the isothermal curve constant.pV �

pV � �

p

Vi Vf

V

W

pi

pf

p pV = constant

pV γ  = constant

Vi Vf

V

W



By bringing a factor of inside the parentheses, we can
write the adiabatic work in the form

(23-21)

If the gas expands, then and since a number less
than 1 raised to any positive power remains less than one,
the work is again shown to be negative. By further using

we can also write the adiabatic work in
equivalent form as

(23-22)

Sample Problem 23-4. A sample of gas consisting of
0.11 mol is compressed from a volume of 4.0 m3 to 1.0 m3 while
its pressure increases from 10 to 40 Pa. Compare the work done
along the three different paths shown in Fig. 23-17.

Solution Path 1 consists of two processes, one at constant pres-
sure followed by another at constant volume. The work done at
constant pressure is found from Eq. 23-17,

The work done at constant volume is zero (see Eq. 23-16), so the
total work for path 1 is

Path 2 represents an isothermal process, along which con-
stant. Thus The work done during the isother-
mal process can be found using Eq. 23-18, substituting piVi for
nRT, which gives

Path 3 consists of a process at constant volume, for which the
work is again zero, followed by a process at constant pressure, and
so the total work for path 3 is

W3 � 0 � pf(Vf � Vi) � �(40 Pa)(1.0 m3 � 4.0 m3) � 120 J.

W2 � �piVi ln 
Vf

Vi
� �(10 Pa)(4.0 m3) ln 

1.0 m3

4.0 m3 � 55 J.

piVi � pfVf � nRT.
T �

W1 � 30 J � 0 � 30 J.

W � �p(Vf � Vi) � �(10 Pa)(1.0 m3 � 4.0 m3) � 30 J.

W �
1

� � 1
 ( pfVf � piVi) (adiabatic).

piVi
� � pfVf

�,

Vi /Vf � 1,

W �
piVi

� � 1 �� Vi

Vf
�

��1

� 1�.

Vi
��1 Note that the work is positive for all three processes, and that the

magnitudes increase according to the area under each path on the
pV diagram.

Sample Problem 23-5. (a) Find the bulk modulus B
for an adiabatic process involving an ideal gas. (b) Use the adia-
batic bulk modulus to find the speed of sound in the gas as a func-
tion of temperature. Evaluate for air at room temperature (20°C).

Solution (a) In the differential limit, the bulk modulus (see Eq.
15-5) can be written

For an adiabatic process, Eq. 23-19 gives, tak-
ing the derivative with respect to V,

or

Thus

for an adiabatic process involving an ideal gas.
(b) In Section 19-3, we determined that the speed of sound in a
gas can be written

where B is the bulk modulus and � is the density of the gas. Using
the result of part (a) and the ideal gas equation of state

we obtain

The quantity �V is the total mass of the gas, which can also be
written nM, where n is the number of moles and M is the molar
mass. Making this substitution, we have

Thus the speed of sound in a gas depends on the square root of the
temperature. For air, the average molar mass is about 0.0290
kg/mol, and the parameter � is about 1.4. Thus for 

23-6 THE INTERNAL ENERGY
OF AN IDEAL GAS

In Section 22-4 we showed that the average translational ki-
netic energy per molecule of an ideal monatomic gas is

(23-23)

For such a gas this is the entire store of internal energy be-
cause there is no other form the internal energy can take.
The molecules of an ideal monatomic gas have no potential

Ktrans � 3
2 kT.

v � √ (1.4)(8.31 J/mol �K)(293 K)

0.0290 kg/mol
� 343 m/s.

� 293 K,
T � 20	C

v � √ �RT

M
.

v � √ �p

�
� √ �(nRT/V )

�
� √ �nRT

�V
.

(pV � nRT ),

v � √B/�,

B � �p

V
dp

dV
� ��p.

d( pV �)

dV
� � dp

dV � V � � p(�V ��1) � 0,

( pV � � constant)

B � �V
dp

dV
.
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Figure 23-17. Sample Problem 23-4. A gas is taken from
initial point i to final point f along three different paths. Path 2 is
an isotherm.
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energy; they cannot vibrate, nor is any energy associated
with their rotation.

The total internal energy of n moles of an ideal
monatomic gas is then the number of molecules 
times the average energy per molecule:

or
(23-24)

Here (see Eq. 21-17) we have replaced NAk with its equal,
the molar gas constant R.

Equation 23-24 shows that, if we change the internal en-
ergy of the gas—by doing work on it or transferring heat to
it— its temperature will change, so that

(23-25)

Let us now consider, not the monatomic or point mole-
cule that has been the focus of our attention so far, but a mol-
ecule consisting of two point particles separated by a given
distance. This model gives a better description of diatomic
gases, such as O2 , N2 , or CO (carbon monoxide). Such a
molecule can acquire kinetic energy by rotating about its
center of mass, and we need to consider contributions to the
internal energy of the gas from the rotational motions of its
molecules as well as from their translational motions.

The rotational kinetic energy of a diatomic molecule, il-
lustrated in Fig. 23-18, can be written

where I is the rotational inertia of the molecule for rotation
about a particular axis. For point masses, no kinetic energy
is associated with rotation about the z axis because 
The total kinetic energy of a diatomic molecule is the sum
of its translational and rotational terms, or

(23-26)K � 1
2 mvx

2 � 1
2 mvy

2 � 1
2 mvz

2 � 1
2 Ix � x

2 � 1
2 Iy � y

2.

Iz � 0.

Krot � 1
2 Ix � x

2 � 1
2 I y � y

2,

�Eint � 3
2 nR �T.

Eint � 3
2 nRT.

Eint � (nNA)(Ktrans) � (nNA)(3
2 kT )

(� nNA)

To find the total internal energy of the gas, we must find the
average energy of a single molecule and then multiply by
the number of molecules.

The five terms in Eq. 23-26 represent independent ways
in which a molecule can absorb energy and are called de-
grees of freedom. A monatomic gas has three degrees of
freedom, since it has only translational kinetic energy

As Eq. 23-26 shows, a diatomic molecule has five de-
grees of freedom, three translational degrees and two rota-
tional degrees. If we increase the internal energy of such a
gas by an amount �Eint , it is clear (because all directions in
the gas are equivalent) that the three translational degrees
will absorb the same amount of energy. Similarly, the two
rotational degrees will absorb the same amount of energy
but there seems to be no reason why these two amounts
should be the same.

However, James Clerk Maxwell derived a theorem
called the equipartition of energy theorem, which asserts
that the energy of a molecule is shared equally, on average,
among all independent ways in which the molecule can ab-
sorb energy. Specifically,

When the number of molecules is large, the average en-
ergy per molecule is for each independent degree of
freedom.

We have already encountered an equipartition of energy sit-
uation in our studies of the one-dimensional simple har-
monic oscillator. In this case energy can be stored in either
kinetic or potential form and, as Fig. 17-8 suggests, on av-
erage the available energy is shared equally between these
two forms.

Let us use the equipartition of energy theorem to write
an expression for the internal energy of a monatomic ideal
gas. The average energy per molecule is (3 degrees of
freedom � for each degree of freedom). The total en-
ergy for N molecules is

(23-27)

Equation 23-27 is identical with Eq. 23-24. For a diatomic
gas, with five degrees of freedom, the result is

(23-28)

A polyatomic gas (more than two atoms per molecule)
generally has three possible axes of rotation (unless 
the three atoms lie in a straight line, as for CO2). The 
kinetic energy of a single molecule would then have a
sixth term, For six degrees of freedom, the internal
energy is

(23-29)

Equations 23-27, 23-28, and 23-29 show us a fact that is in-
herent in the equipartition of energy theorem—namely,
that no matter what the nature of its molecules,

Eint � N( 6
2 kT ) � 3nRT (polyatomic gas).

1
2Iz�z

2.

Eint � N( 5
2 kT ) � 5

2 nRT (diatomic gas).

Eint � N( 3
2 kT ) � 3

2 nRT (monatomic gas).

1
2 kT

3
2 kT

1
2 kT

� 1
2 mvy

2 � 1
2 mvz

2.)(K � 1
2 mvx

2
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Figure 23-18. A diatomic molecule, consisting of two atoms
considered to be point particles, is shown with its axis along the z
axis of a coordinate system. In this orientation, the rotational iner-
tia for rotations about the z axis is zero, and thus there is no term
in the kinetic energy corresponding to such rotations. The rota-
tional inertias for rotations about the x and y axes are not zero,
and thus there are kinetic energy terms for such rotations.

y

x

z



The internal energy of an ideal gas depends only on its
temperature.

It does not depend on its pressure or its volume.
So far we have considered only the contributions of the

translational or rotational kinetic energy to the internal en-
ergy of the gas. Other kinds of energy may also contribute.
For example, a diatomic molecule that is free to vibrate
(imagine two point atoms connected by a spring) has two
additional contributions to the energy: the potential energy
of the spring and the kinetic energy of the oscillating
atoms. Thus a diatomic molecule free to translate, rotate,
and vibrate would have degrees of free-
dom. For polyatomic molecules, the number of vibrational
terms can be greater than two. The vibrational modes in the
internal energy are usually apparent only at high gas tem-
peratures, where the more violent collisions can cause the
molecule to vibrate.

Molar Heat Capacities of Solids
We can also apply the equipartition of energy theorem to
the molar heat capacities of solids, a topic that we dis-
cussed in Section 23-4. As Fig. 21-9 suggests, an atom in a
solid is fixed in a lattice. The atom can oscillate back and
forth about its equilibrium position in three independent di-
rections, thus displaying three degrees of freedom associ-
ated with its kinetic energy. The atom also has potential en-
ergy, associated with the forces between it and its
neighboring atoms, again in three independent directions.
This gives rise to three more degrees of freedom for a total
of six. The average energy per atom is then 
3kT. For a sample containing N atoms, the total internal en-
ergy is then

in which n is the number of moles.
Suppose that energy Q is added to the solid sample as

heat, raising its temperature by �T. Because no work is
done in this process the first law of thermody-
namics yields

The molar heat capacity is then

As Fig. 23-11 shows, this is simply the experimentally ob-
served high-temperature limit for the molar heat capacities
of solids. Note that, although the (classical) equipartition of
energy theorem gives the correct value for the molar heat
capacity in the limit of sufficiently high temperatures, it
fails at lower temperatures. In this region only a treatment
based on quantum physics proves to agree with experiment.

� (3)(8.31 J/mol �K) � 25 J/mol�K.

C �
Q

n �T
�

3nR �T

n �T
� 3R

Q � �Eint � 3nR �T.

(Q � W � �Eint)
(W � 0),

Eint � N(3kT ) � 3nNAkT � 3nRT,

6 � 1
2 kT �

7(� 3 � 2 � 2)

23-7 HEAT CAPACITIES OF AN
IDEAL GAS

We have used the equipartition of energy theorem to calcu-
late the molar heat capacity of a solid. Let us now use it to
calculate the molar heat capacities of an ideal gas. The
measured heat capacity of a substance depends on the man-
ner in which the heat is added to it. In the case of a gas, for
example, is the volume held constant during the process? Is
the pressure held constant? We explore both possibilities.

Molar Heat Capacity at Constant Volume
Let us introduce n moles of a gas into a cylinder fitted with
a piston. We fix the position of the piston so that there 
can be no volume change and thus no work done, and then
we add an amount of energy Q to the gas as heat. From the
first law of thermodynamics (Eq. 23-6) we have, because
W � 0,

(23-30)

We let CV represent the molar heat capacity at constant vol-
ume, so that

(23-31)

From Eq. 23-27, for a monatomic ideal gas 
and so

. (23-32)

Repeating this derivation using Eqs. 23-28 and 23-29 for
diatomic and polyatomic gases, we find

, (23-33)

. (23-34)

Molar Heat Capacity at Constant Pressure
Figure 23-19 shows two ideal gas isotherms differing in
temperature by �T. Path AB is the constant-volume process
considered previously. Path AC is a constant-pressure

CV � 3R � 24.9 J/mol�K (polyatomic gas)

CV � 5
2R � 20.8 J/mol�K (diatomic gas)

CV � 3
2 R � 12.5 J/mol�K (monatomic gas)

3
2 nR �T,

�Eint �

CV �
Q

n �T
�

�Eint

n �T
.

Q � �Eint .
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Figure 23-19. Two ideal-gas isotherms differing in tempera-
ture by �T are connected by the constant-volume process AB and
the constant-pressure process AC.
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process that connects the same two isotherms. In Section
23-6 we established that the internal energy of an ideal gas
depends only on the temperature. For all paths connecting
the two isotherms of Fig. 23-19, the change in internal en-
ergy has the same value, because all paths correspond to the
same change in temperature. In particular, the change in in-
ternal energy is the same for paths AB and AC.

(23-35)

There are two contributions to the change in internal en-
ergy along path AC— the heat Q transferred to the gas and
the work W done on the gas:

(23-36)

Note the sign conventions that are implicit in Eq. 23-36.
Heat transferred from the environment is considered to be
positive and tends to increase the internal energy. If the vol-
ume decreases, the work done on the gas by the environ-
ment is positive, which tends to increase the internal en-
ergy. If the volume increases we regard the gas as
doing work on the environment, which tends to decrease
the supply of internal energy of the gas.

The heat transferred in a constant-pressure process can
be written

(23-37)

where Cp is the molar heat capacity at constant pressure.
Equation 23-15 gives the work along path AC as

which can be written for this constant-pres-
sure process using the ideal gas law as

(23-38)

Using Eq. 23-31 to obtain the change in internal energy
along path AB, we can substitute into Eq. 23-36 to find

or
(23-39)

From Eqs. 23-32 to 23-34 we then find the molar heat ca-
pacities at constant pressure:

(23-40)

(23-41)

(23-42)

Another parameter of interest, which can be directly
measured independently of the values of Cp and CV, is the
ratio of molar heat capacities �, defined as

(23-43)

Because the specific heat capacity is related to the molar
heat capacity by where M is the molar mass of
the substance, we can also express � as For this rea-
son � is often called the ratio of specific heats or specific
heat ratio. We used � previously in the expression for the

cp /cV .
c � C/M,

� �
Cp

CV
.

Cp � 4R � 33.3 J/mol�K (polyatomic gas).

Cp � 7
2R � 29.1 J/mol�K (diatomic gas), 

Cp � 5
2R � 20.8 J/mol�K (monatomic gas),

Cp � CV � R.

nCV �T � nCp �T � nR �T

W � �p �V � �nR �T.

W � �p �V,

Q � nCp �T,

(W � 0),

�Eint, AC � Q � W.

�Eint, AB � �Eint, AC .

speed of sound in a gas (Sample Problem 23-5) and in the
relationship between pressure and volume in an adiabatic
process (Eq. 23-19).

Using Eqs. 23-40 to 23-42 for Cp and Eqs. 23-32 to 23-
34 for CV, we obtain

(23-44)

(23-45)

(23-46)

Table 23-4 shows a comparison of observed values with the
predictions of the ideal gas model. The agreement is excel-
lent.

Sample Problem 23-6. A family enters a winter vaca-
tion cabin that has been unheated for such a long time that the in-
terior temperature is the same as the outside temperature (0°C).
The cabin consists of a single room of floor area 6 m by 4 m and
height 3 m. The room contains one 2-kW electric heater. Assum-
ing that the room is perfectly airtight and that all the heat from the
electric heater is absorbed by the air, none escaping through the
walls or being absorbed by the furnishings, how long after the
heater is turned on will the air temperature reach the comfort level
of 21°C 

Solution Let us assume that the air in the room (which is mostly
nitrogen and oxygen) behaves like an ideal diatomic gas, so that
(according to Table 23-4) The volume of the
room is

Since 1 mole of an ideal gas occupies 22.4 L at 0°C and 1 atm, the
number of moles is

If the room is airtight (see the discussion below), we can regard
the absorption of heat to take place at constant volume, for which

� 1.4 � 106 J. 
Q � nCV �T � (3.2 � 103 mol)(20.8 J/mol �K)(21 K)

n � (72,000 L)/(22.4 L/mol) � 3.2 � 103 mol.

V � (6 m)(4 m)(3 m) � 72 m3 � 72,000 L.

CV � 20.8 J/mol�K.

(� 70	F)?

� � 4
3 � 1.33 (polyatomic gas).

� � 7
5 � 1.40 (diatomic gas), 

� � 5
3 � 1.67 (monatomic gas),
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Cp CV

Gas (J/mol K) (J/mol K) (J/mol K) �

Monatomic
Ideal 20.8 12.5 8.3 1.67
He 20.8 12.5 8.3 1.66
Ar 20.8 12.5 8.3 1.67

Diatomic
Ideal 29.1 20.8 8.3 1.40
H2 28.8 20.4 8.4 1.41
N2 29.1 20.8 8.3 1.40
O2 29.4 21.1 8.3 1.40

Polyatomic
Ideal 33.3 24.9 8.3 1.33
CO2 37.0 28.5 8.5 1.30
NH3 36.8 27.8 9.0 1.31

���
Cp � CV

Table 23-4 Molar Heat Capacities of Gases



The heater delivers a power P of 2 kW and can provide this en-
ergy in a time of

or about 12 min.
This problem contained some very unphysical assumptions

about the absorption of heat in this room. Try to estimate the heat
capacity of some pieces of furniture to see whether neglecting
their effect on the heat absorption (and thus on the time to bring
the room to comfort level) was reasonable. The heat loss through
the walls of the room, which we considered in Section 23-2, also
will have a considerable effect on this problem.

Is the assumption about the room being airtight reasonable? If
the air in the cabin were originally at a pressure of 1 atm when the
temperature was 0°C, what will be the interior pressure at 21°C?
What will be the resulting outward force on the roof and walls? A
more reasonable assumption might be that the room is not quite
airtight, but that as the temperature rises some air will escape,
thereby keeping the pressure constant. See Problem 16 for a cal-
culation based on this assumption.

Sample Problem 23-7. Consider once again the situa-
tion of Sample Problem 23-4, in which 0.11 mole of an ideal gas
begins at the initial point with volume and pressure

Pa. Let the cylinder be removed from the thermal reser-
voir, and let us compress the gas adiabatically until its volume is

m3. Find the change in internal energy of the gas, assum-
ing it to be helium (a monatomic gas with � � 1.66).

Solution To find the change in internal energy, we can use Eq.
23-27 if we know the change in temperature. We can find the ini-
tial temperature using the ideal gas law (since pi and Vi are
known), and we can find the final temperature if we know the
pressure and volume of the final point. The final pressure can be
found using the adiabatic relationship of Eq. 23-19:

On the pV diagram of Fig. 23-17, the final point reached in the
adiabatic process lies vertically far above the final point reached in
the isothermal process (40 Pa). This is consistent with the adia-
batic curves being steeper than the isothermal curves, as shown in
Fig. 23-16.

We can now proceed to find the initial and final temperatures
and then the change in internal energy:

The change in internal energy is positive. This is consistent with
the first law of thermodynamics because 
for this adiabatic process and the work done in compressing the
gas is positive.

Q � 0W � �Eint)(Q �

� 3
2 (0.11 mol)(8.31 J/mol�K)(109 K � 44 K) � 89 J.

�Eint � 3
2 nR�T

Tf �
pfVf

nR
�

(100 Pa)(1.0 m3)

(0.11 mol)(8.31 J/mol�K)
� 109 K. 

Ti �
piVi

nR
�

(10 Pa)(4.0 m3)

(0.11 mol)(8.31 J/mol�K)
� 44 K. 

pf �
piVi

�

Vf
�

�
(10 Pa)(4.0 m3)1.66

(1.0 m3)1.66 � 100 Pa.

Vf � 1.0

pi � 10
Vi � 4.0 m3

t �
Q

P
�

1.4 � 106 J

2 � 103 W
� 700 s,

23-8 APPLICATIONS OF THE
FIRST LAW OF THERMODYNAMICS

Now that we have examined many of the properties of the
ideal gas, including its internal energy (Section 23-6) and
its heat capacities (Section 23-7), we are ready to study the
various processes that a system consisting of an ideal gas
can undergo.

Adiabatic Processes
In an adiabatic process the system is well insulated so that
no heat enters or leaves, in which case The first law
becomes, in this case,

(23-47)

Let us derive the relationship between p and V for an adia-
batic process carried out on an ideal gas, which we used in
Section 23-5. We assume the process to be carried out
slowly, so that the pressure is always well defined. For an
ideal gas, we can write Eq. 23-31 as

Thus
(23-48)

The equation of state of the gas can be written in differen-
tial form as

(23-49)

However, p dV is simply �dW, which is equal to �dEint

(since Eq. 23-47 can be written in differential form as
Solving Eq. 23-49 for V dp and substituting

Eq. 23-48, we have

(23-50)

where the last result has been obtained using Eq. 23-39,
We now take the ratio between Eqs. 23-50

and 23-48, which gives

using Eq. 23-43 for the ratio of molar heat capacities �.
Rewriting, we find

which we can integrate between initial state i and final 
state f

which can be written

(23-51)piVi
� � pfVf

� .

 ln 
pf

pi
� �� ln 

Vf

Vi
, 

�pf

pi

dp

p
� �� �Vf

Vi

dV

V

dp

p
� ��

dV

V
,

V dp

p dV
�

nCp dT

�nCV dT
� �

Cp

CV
� ��,

Cp � CV � R.

V dp � nCV dT � nR dT � nCp dT,

dEint � dW ).

p dV � V dp � nR dT. 

d(pV) � d(nRT) 

p dV � �dW � �dEint � �nCV dT.

dEint � nCV dT.

�Eint � W (adiabatic process).

Q � 0.
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Since i and f are arbitrary points, we can write this equation
as

(23-52)

Equations 23-51 and 23-52 give the relationship between
the pressure and volume of an ideal gas that undergoes an
adiabatic process. Given the values of the pressure and vol-
ume at the initial point, the adiabatic process will proceed
through final points whose pressure and volume can be cal-
culated from Eq. 23-51. Equivalently, Eq. 23-52 defines a
family of curves on a pV diagram. Every adiabatic process
can be represented by a segment of one of these curves
(Fig. 23-20).

We can rewrite these results in terms of temperature, us-
ing the ideal gas equation of state:

(23-53)

The constant in Eq. 23-53 is not the same as that in Eq. 23-
52. Equivalently, we can write Eq. 23-53 as

(23-54)

Suppose we compress a gas in an adiabatic process.
Then and Eq. 23-54 requires that The
temperature of the gas rises as it is compressed, as we fre-
quently observe from the warming of a bicycle pump. Con-
versely, the temperature falls when a gas expands, which is
often used as a means to achieve low temperatures in the
laboratory (see Fig. 23-20).

Sound waves in air can be represented in terms of adia-
batic processes. At audio frequencies, air is a poor conduc-
tor of heat. There is an increase in temperature in the com-

Tf � Ti .Vi � Vf ,

Tf � Ti � Vi

Vf
�

��1

TiVi
��1 � TfVf

��1

TV ��1 � constant.

(pV)V ��1 � constant

pV � � constant.

pression zones of a sound wave, but due to the poor con-
duction there is no appreciable heat transfer to the neigh-
boring cooler rarefactions; the process is thus adiabatic.
The compressions and expansions of steam in a steam en-
gine, or of the hot gases in the cylinders of an internal com-
bustion engine, are also essentially adiabatic, because there
is insufficient time for heat to be transferred.

Isothermal Processes
In an isothermal process, the temperature remains constant.
If the system is an ideal gas, then the internal energy must
therefore also remain constant. With the first law
gives

(23-55)

If an amount of (positive) work W is done on the gas, an
equivalent amount of heat is released by the gas
to the environment. None of the work done on the gas re-
mains with the gas as stored internal energy.

Figure 23-20 compares isothermal and adiabatic
processes for 1 mole of a monatomic ideal gas.

Constant-Volume Processes
If the volume of a gas remains constant, it can do no work.
Thus and the first law gives

(23-56)

In this case all the heat that enters the gas is stored
as internal energy 

Cyclical Processes
In a cyclical process we carry out a sequence of operations
that eventually restores the system to its initial state, as, for
example, the three-step process illustrated in Fig. 23-21.
Because the process starts and finishes at the point A, the
internal energy change for the cycle is zero. Thus, accord-
ing to the first law,

(23-57)Q � W � 0 (cyclical process),

(�Eint � 0).
(Q � 0)

�Eint � Q (constant-volume process).

W � 0,

Q � �W

Q � W � 0 (isothermal process; ideal gas).

�Eint � 0,
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Figure 23-20. Isothermal processes (solid lines) and adia-
batic processes (dashed lines) carried out on 1 mole of a diatomic
ideal gas. Note that an adiabatic increase in volume (for example,
the segment ab) is always accompanied by a decrease in tempera-
ture.
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Figure 23-21. A gas undergoes a cyclical process starting at
point A and consisting of (1) a constant-volume process AB, (2) a
constant-pressure process BC, and (3) an isothermal process CA.
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where Q and W represent the totals for the cycle. In Fig. 23-
21, the total work is positive, because there is more positive
area under the curve representing step 3 than there is nega-
tive area under the line representing step 2. Thus 
and it follows from Eq. 23-57 that In fact, for any
cycle that is done in a counterclockwise direction, we must
have (and thus whereas cycles performed in
the clockwise direction have and 

Free Expansion
Figure 23-22 represents the process known as free expan-
sion. The gas is initially in one side of the container, and
when the stopcock is opened, the gas expands into the pre-
viously evacuated half. No weights can be raised in this
process, so no work is done. The container is insulated, so
the process is adiabatic. Hence, with and the
first law gives

(23-58)

Thus the internal energy of an ideal gas undergoing a free
expansion remains constant, and because the internal en-
ergy of an ideal gas depends only on the temperature, its
temperature must similarly remain constant.

The free expansion is a good example of a nonequilib-
rium process. If a gas has a well-defined pressure and vol-
ume (and therefore temperature), we can show the state of

�Eint � 0 (free expansion).

Q � 0,W � 0

Q � 0.W � 0
Q � 0),W � 0

Q � 0.
W � 0

the gas as a point on a pV diagram. The assignment of a
temperature to the gas means that it must be in thermal
equilibrium; each point on a pV diagram therefore repre-
sents a system in equilibrium. In the case of a free expan-
sion, the initial state (all gas on one side) is an equilibrium
state, as is the final state; but at intermediate times, as the
gas rushes from one side to the other, the temperature and
the pressure do not have unique values, and we cannot plot
this process on a pV diagram. Only the initial and final
points appear on the graph. Nevertheless, we can still use
the first law to analyze this process, because the change in
internal energy depends only on the initial and final
points.

Table 23-5 summarizes the processes we have consid-
ered and their energy transfers.

Sample Problem 23-8. Let 1.00 kg of liquid water be
converted to steam by boiling at standard atmospheric pressure;
see Fig. 23-23. The volume changes from an initial value 
of 1.00 � 10�3 m3 as a liquid to 1.671 m3 as steam. For this
process, find (a) the work done on the system, (b) the heat added
to the system, and (c) the change in the internal energy of the
system.
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Figure 23-22. Free expansion. Opening the stopcock allows
gas to flow from one side of the insulated container to the other.
No work is done, and no heat is transferred to the environment.

GasGas

Initial equilibrium state

Vacuum

Final equilibrium state

Stopcock openStopcock closed
Insulating material

Gas

Process Restriction First Law Other Results

All None

Adiabatic

Constant volume

Constant pressure

Isothermal

Cycle

Free expansion

Items underlined apply only to ideal gases; all other items apply in general.

�T � 0�Eint � 0Q � W � 0

Q � �W�Eint � 0

W � �nRT ln(Vf /Vi)Q � �W�Eint � 0

W � �p�V, Q � nCp �T�Eint � Q � W�p � 0

Q � nCV �T�Eint � QW � 0

W � ( pfVf � piVi)/(� � 1)�Eint � WQ � 0

�Eint � nCV �T, W � ��p dV�Eint � Q � W

Table 23-5 Applications of the First Law

Figure 23-23. Sample Problem 23-8. Water is boiling at
constant pressure. Heat flows from the reservoir until the water
has changed completely into steam. Work is done by the expand-
ing gas as it lifts the piston.

Liquid water

Lead shot

Insulation

Control knob

Steam
W

Q T



Solution (a) The work done on the gas during this constant-pres-
sure process is given by Eq. 23-17:

The work done on the system is negative; equivalently, positive
work is done by the system on its environment in lifting the
weighted piston of Fig. 23-23.
(b) From Eq. 23-13 we have

This quantity is positive, as is appropriate for a process in which
heat is transferred to the system.
(c) We find the change in internal energy from the first law:

This quantity is positive, indicating that the internal energy of the
system has increased during the boiling process. This energy rep-
resents the internal work done in overcoming the strong attraction
that the H2O molecules have for each other in the liquid state.

We see that, when water boils, about 7.5% (169 kJ/2260 kJ �
0.075) of the added heat goes into external work in pushing back
the atmosphere. The rest goes into internal energy that is added to
the system.

Sample Problem 23-9. The cycle shown in Fig. 23-21
consists of three processes, starting at point A: a reduction in pres-
sure at constant volume from point A to point B; an increase in vol-
ume at constant pressure from point B to point C; an isothermal
compression (decrease in volume) from point C back to point A. Let
the cycle be carried out on 0.75 mol of a diatomic ideal gas, with

and For
each of the three processes and for the cycle, find Q, W, and �Eint .

Solution The first step is to find the values of p, V, and T at each
point. At point A, we are given pA and VA , and we can solve for TA

from the ideal gas law:

At point B, we are given pB and and we can similarly
find TB :

At point C, we know and because process
CA is an isotherm). We can then find VC :

VC �
nRTC

pC

�
(0.75 mol)(8.31 J/mol�K)(108 K)

1.2 � 103 Pa
� 0.56 m3.

TC (� TA ,pC (� pB)

TB �
pBVB

nR
�

(1.2 � 103 Pa)(0.21 m3)

(0.75 mol)(8.31 J/mol�K)
� 40 K.

VB (� VA),

TA �
pAVA

nR
�

(3.2 � 103 Pa)(0.21 m3)

(0.75 mol)(8.31 J/mol�K)
� 108 K.

pB � 1.2 � 103 Pa.VA � 0.21 m3,pA � 3.2 � 103 Pa,

�Eint � Q � W � 2260 kJ � (�169 kJ) � 2090 kJ.

Q � Lm � (2256 kJ/kg)(1.00 kg) � 2260 kJ.

� �1.69 � 105 J � �169 kJ. 
� �(1.01 � 105 Pa)(1.671 m3 � 1.00 � 10�3 m3)

W � �p(Vf � Vi) 

With this information, we can now calculate the heat transfer,
work done, and change in internal energy for each process. For
process 1 (AB), we have

The system transfers energy to the environment as heat during
process 1, and its temperature falls, corresponding to a negative
change in internal energy.

For the constant-pressure process 2 (BC), we obtain

Energy is transferred to the gas as heat during process 2, and in
expanding the gas does work on its environment (the environment
does negative work on the gas.)

Along the isotherm (CA), the work is given by Eq. 23-18;

For the cycle, we have

Note that, as expected for the cycle, and The
total work for the cycle is positive, as we expect for a cycle that is
done in the counterclockwise direction.

In solving problems of this type, we can use expressions that
give directly the heat transfer in adiabatic constant-pres-
sure, and constant-volume processes. For other processes, such as
the isothermal step in this problem, we can find Q only by first
finding �Eint and W and then using the first law.

(Q � 0),

Q � �W.�Eint � 0

�Eint � �Eint, 1 � �Eint, 2 � �Eint, 3 � �1060 J � 1060 J � 0 � 0.

W � W1 � W2 � W3 � 0 � (�420 J) � 660 J � 240 J, 

� �240 J, 

Q � Q1 � Q2 � Q3 � �1060 J � 1480 J � (�660 J)

Q3 � �Eint, 3 � W3 � 0 � 660 J � �660 J. 

�Eint, 3 � 0 (isothermal process), 

� 660 J, 

� �(0.75 mol)(8.31 J/mol�K)(108 K) ln 
0.21 m3

0.56 m3

W3 � �nRTC ln 
VA

VC

�Eint, 2 � Q2 � W2 � 1480 J � (�420 J) � 1060 J. 

� �(1.2 � 103 Pa)(0.56 m3 � 0.21 m3) � �420 J,

W2 � �p(VC � VB) 

� (0.75 mol)(29.1 J/mol�K)(108 K � 40 K) � 1480 J,

Q2 � nCp(TC � TB) 

�Eint, 1 � Q1 � W1 � �1060 J � 0 � �1060 J. 

W1 � 0 (constant-volume process), 

� (0.75 mol)(20.8 J/mol�K)(40 K � 108 K) � �1060 J,

Q1 � nCV(TB � TA) 
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MULTIPLE CHOICE

23-1 Heat: Energy in Transit

23-2 The Transfer of Heat

1. Two identical long, thin, solid cylinders are used to conduct
heat from a reservoir at temperature Thot to a reservoir at tem-

perature Tcold . Originally the cylinders are connected in series
as shown in Fig. 23-24a, and the rate of heat transfer is H0 . If
the cylinders are connected in parallel instead as shown in
Fig. 23-24b, then what would be the rate of heat transfer?

(A) 16H0 (B) 4H0 (C) 2H0 (D) H0/2



(E) The answer depends on the thermal conductivity, k, of
the cylinders.

were originally at 20°C. When the systems reach thermal
equilibrium, which aluminum block will have the higher final
temperature?

(A) Block A (B) Block B
(C) The blocks will have the same final temperature.
(D) The answer depends on the specific heat of water.

7. A 1-kg block of ice at 0°C is placed into a perfectly insulated,
sealed container that has 2 kg of water also at 0°C. The water
and ice completely fill the container, but the container is flexi-
ble. After some time one can expect that

(A) the water will freeze so that the mass of the ice will in-
crease.

(B) the ice will melt so that the mass of the ice will de-
crease.

(C) both the amount of water and the amount of ice will re-
main constant.

(D) both the amount of water and the amount of ice will
decrease.

23-5 Work Done on or by an Ideal Gas
8. In which of the paths between initial state i and final state f in

Fig. 23-25 is the work done on the gas the greatest?
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Figure 23-24. Multiple-choice question 1.

H0

Thot

Thot

(a)

(b)

Tcold

Tcold

2. Two long, thin, solid cylinders are identical in size, but they
are made of different substances with two different thermal
conductivities. The two cylinders are connected in series be-
tween a reservoir at temperature Thot and a reservoir at tem-
perature Tcold . The temperature at the boundary between the
two cylinders is Tb . One can conclude that

(A) Tb is exactly half way between Thot and Tcold .
(B) Tb is closer to Thot than it is to Tcold .
(C) Tb is closer to Tcold than it is to Thot .
(D) Tb is closer to the temperature of the reservoir that is in

contact with the cylinder with the lower thermal con-
ductivity.

(E) Tb is closer to the temperature of the reservoir that is in
contact with the cylinder with the higher thermal con-
ductivity.

3. A spherical constant temperature heat source of radius r1 is at
the center of a uniform solid sphere of radius r2 . The rate at
which heat is transferred through the surface of the sphere is
proportional to

(A) (B)
(C) (D)
(E) (1/r2 � 1/r1)�1.

23-3 The First Law of Thermodynamics
4. Which of the following processes must violate the first law of

thermodynamics? (There may be more than one answer!)
(A)
(B)
(C)
(D)
(E)

23-4 Heat Capacity and Specific Heat
5. A 100-g cube of aluminum originally at 120°C is placed into

an insulated container of water originally at 18°C. After some
time the system reaches equilibrium, and the final tempera-
ture of the water is 22°C. What is the final temperature of the
aluminum cube?

(A) It is greater than 22°C.
(B) It is equal to 22°C.
(C) It is less than 22°C.
(D) It could be more or less than 22°C, depending on the

mass of water present.

6. Block A is a 50-g aluminum block originally at 90°C. Block
B is a 100-g aluminum block originally at 45°C. The blocks
are placed in two separate 1.0 liter containers of water that

W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0
W � 0, Q � 0, and �Eint � 0

1/r2 � 1/r1 .ln r1 � ln r2 .
r2 � r1 .r 2

2 � r 1
2 .

V

p

A

B
C

Df

i

Figure 23-25. Multiple-choice question 8.

9. Which of the following is not a necessary condition for a
process involving an ideal gas to do work? (There may be
more than one correct answer!)

(A) (B)
(C) (D)

23-6 The Internal Energy of an Ideal Gas
10. Consider the following processes that can be done on an ideal

gas: constant volume, constant pressure,
and constant temperature, (a) For which process
does (b) For which process does (c) For
which of these processes does (d) For which of
these processes does (e) For which of these
processes does 

(A) (B) (C)
(D) None of these

23-7 Heat Capacities of an Ideal Gas
11. Which type of ideal gas will have the largest value for

(A) Monatomic (B) Diatomic (C) Polyatomic
(D) The value will be the same for all.

12. What would be the most likely value for CT , the molar heat
capacity at constant temperature?

(A) 0 (B)
(C) (D) CT � �CV � CT � Cp

0 � CT � CV

Cp � CV ?

�T � 0�p � 0�V � 0
�Eint � W?

�Eint � Q?
W � Q � 0?

Q � 0?W � 0?
�T � 0.

�p � 0;�V � 0;

Q  0�V  0
�p  0�T  0



23-8 Applications of the First Law of Thermodynamics
13. Which of the following processes is forbidden by the first law

of thermodynamics? (There may be more than one correct an-
swer!)

(A) An ice cube is placed in hot coffee; the ice gets colder
and the coffee gets hotter.

(B) Solid wax is placed in a hot metal pan; the wax melts
and the metal pan cools.

(C) Cold water is placed in a cold glass; the glass gets
colder and the water gets colder.

(D) A student builds an automobile engine that converts
into work the heat energy released when water changes
to ice.

(E) Dry ice can be made by allowing carbon dioxide gas to
expand in a bag.
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QUESTIONS

1. Temperature and heat are often confused, as in “the heat is 
really severe today.” By example, distinguish between these
two concepts as carefully as you can.

2. Give an example of a process in which no heat is transferred
to or from the system but the temperature of the system
changes.

3. Can heat be considered a form of stored (or potential) energy?
Would such an interpretation contradict the concept of heat as
energy in the process of transfer because of a temperature dif-
ference?

4. Can heat be added to a substance without causing the temper-
ature of the substance to rise? If so, does this contradict the
concept of heat as energy in the process of transfer because of
a temperature difference?

5. Why must heat energy be supplied to melt ice? After all, the
temperature does not change.

6. Explain the fact that the presence of a large body of water
nearby, such as a sea or ocean, tends to moderate the tempera-
ture extremes of the climate on adjacent land.

7. As ice is heated it melts, forming a liquid, and then it boils.
However, as solid carbon dioxide is heated it goes directly to
the vapor state—we say it sublimes—without passing
through a liquid state. How could liquid carbon dioxide be
produced?

8. Pails of hot and cold water are set out in freezing weather. Ex-
plain how (a) if the pails have lids, the cold water will freeze
first, but (b) if the pails do not have lids, it is possible for the
hot water to freeze first.

9. Why does the boiling temperature of a liquid increase with
pressure?

10. A block of wood and a block of metal are at the same temper-
ature. When the blocks feel cold, the metal feels colder than
the wood; when the blocks feel hot, the metal feels hotter than
the wood. Explain. At what temperature will the blocks feel
equally hot or cold?

11. How can you best use a spoon to cool a cup of coffee?
Stirring—which involves doing work—would seem to heat
the coffee rather than cool it.

12. How does a layer of snow protect plants during cold weather?
During freezing spells, citrus growers in Florida often spray
their fruit with water, hoping it will freeze. How does that
help?

13. Explain the wind-chill effect.

14. You put your hand in a hot oven to remove a casserole and
burn your fingers on the hot dish. However, the air in the oven

is at the same temperature as the casserole dish but it does not
burn your fingers. Why not?

15. Metal workers have observed that they can dip a hand very
briefly into hot molten metal without ill effects. Explain.

16. Why is thicker insulation used in an attic than in the walls of
a house?

17. Is ice always at 0°C? Can it be colder? Can it be warmer?
What about an ice–water mixture?

18. (a) Can ice be heated to a temperature above 0°C without its
melting? Explain. (b) Can water be cooled to a temperature
below 0°C without its freezing? Explain. (See “The Under-
cooling of Liquids,” by David Turnbull, Scientific American,
January 1965, p. 38.)

19. Explain why your finger sticks to a metal ice tray just taken
from your refrigerator.

20. It is difficult to “boil” eggs in water at the top of a high
mountain because water boils there at a relatively low tem-
perature. What is a simple, practical way of overcoming this
difficulty?

21. Will a 3-minute egg cook any faster if the water is boiling fu-
riously than if it is simmering quietly?

22. Water is a much better coolant than most liquids. Why?
Would there be instances in which another liquid might be
preferred?

23. Explain why the latent heat of vaporization of a substance
might be expected to be considerably greater than its latent
heat of fusion.

24. Explain why the specific heat at constant pressure is greater
than the specific heat at constant volume.

25. Why is the difference between Cp and CV often neglected for
solids?

26. Can Cp ever be less than CV ? If so, give an example.

27. Real gases always cool when making a free expansion,
whereas an ideal gas does not. Explain.

28. Discuss the similarities and especially the distinctions be-
tween heat, work, and internal energy.

29. Discuss the process of the freezing of water from the point of
view of the first law of thermodynamics. Remember that ice
occupies a greater volume than an equal mass of water.

30. A thermos bottle contains coffee. The thermos bottle is vigor-
ously shaken. Consider the coffee as the system. (a) Does its
temperature rise? (b) Has heat been added to it? (c) Has work
been done on it? (d) Has its internal energy changed?



31. Is the temperature of an isolated system (no interaction with
the environment) conserved? Explain.

32. Is heat the same as internal energy? If not, give an example in
which a system’s internal energy changes without a flow of
heat across the system’s boundary.

33. Can you tell whether the internal energy of a body was ac-
quired by heat transfer or by the performance of work?

34. If the pressure and volume of a system are given, is the tem-
perature always uniquely determined?

35. Keeping in mind that the internal energy of a body consists of
kinetic energy and potential energy of its particles, how
would you distinguish between the internal energy of a body
and its temperature?

36. Explain how we might keep a gas at a constant temperature
during a thermodynamic process.

37. On a winter day the temperature on the inside surface of a
wall is much lower than room temperature and that of the out-

side surface is much higher than the outdoor temperature. Ex-
plain.

38. Can heat energy be transferred through matter by radiation? If
so, give an example. If not, explain why.

39. Why does stainless steel cookware often have a layer of cop-
per or aluminum on the bottom?

40. Consider that heat can be transferred by convection and radia-
tion, as well as by conduction, and explain why a thermos
bottle is doubled-walled, evacuated, and silvered.

41. A lake freezes first at its upper surface. Is convection in-
volved? What about conduction and radiation?

42. Explain why the temperature of a gas drops in an adiabatic
expansion.

43. Comment on this statement: “There are two ways to carry out
an adiabatic process. One is to do it quickly and the other is to
do it in an insulated box.”
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Figure 23-26. Exercise 5.

Figure 23-27. Exercise 8.

EXERCISES

23-1 Heat: Energy in Transit

23-2 The Transfer of Heat

1. The average rate at which heat flows out through the surface
of the Earth in North America is 54 mW/m2 and the average
thermal conductivity of the near surface rocks is 2.5 W/m � K.
Assuming a surface temperature of 10°C, what should be the
temperature at a depth of 33 km (near the base of the crust)?
Ignore the heat generated by radioactive elements; the curva-
ture of the Earth can also be ignored.

2. Calculate the rate at which heat would be lost on a very cold
winter day through a 6.2 m � 3.8 m brick wall 32 cm thick.
The inside temperature is 26°C and the outside temperature is
�18°C; assume that the thermal conductivity of the brick is
0.74 W/m � K.

3. Consider the slab shown in Fig. 23-2. Suppose that
cm, 1.80 m2, and the material is copper. If

and a steady state is reached,
find (a) the temperature gradient, (b) the rate of heat transfer,
and (c) the temperature at a point in the rod 11.0 cm from the
high-temperature end.

4. (a) Calculate the rate at which body heat flows out through
the clothing of a skier, given the following data: the body
surface area is 1.8 m2 and the clothing is 1.2 cm thick; skin
surface temperature is 33°C, whereas the outer surface of
the clothing is at 1.0°C; the thermal conductivity of the
clothing is 0.040 W/m � K. (b) How would the answer
change if, after a fall, the skier’s clothes become soaked
with water? Assume that the thermal conductivity of water is
0.60 W/m � K.

5. Four square pieces of insulation of two different materials, all
with the same thickness and area A, are available to cover an
opening of area 2A. This can be done in either of the two
ways shown in Fig. 23-26. Which arrangement, (a) or (b),
would give the lower heat flow if k 2  k 1?

�T � 136 C	,T � �12.0	C,
A ��x � 24.9

6. Show that the temperature Tx at the interface of a compound
slab (see Sample Problem 23-1) is given by

7. Ice has formed on a shallow pond and a steady state has been
reached with the air above the ice at �5.20°C and the bottom
of the pond at 3.98°C. If the total depth of ice � water is 
1.42 m, how thick is the ice? (Assume that the thermal con-
ductivities of ice and water are 1.67 and 0.502 W/m � K, re-
spectively.)

8. Two identical rectangular rods of metal are welded end 
to end as shown in Fig. 23-27a, and 10 J of heat flows
through the rods in 2.0 min. How long would it take for 
30 J to flow through the rods if they are welded as shown in
Fig. 23-27b?

Tx �
R1T1 � R2T2

R1 � R2
.

k1

k1

k1

k1

k2

(a) (b)

k2

k2

k2

0°C 100°C

0°C
100°C

(a)

(b)



9. An idealized representation of the air temperature as a func-
tion of distance from a single-pane window on a calm, winter
day is shown in Fig. 23-28. The window dimensions are 
60 cm � 60 cm � 0.50 cm. (a) At what rate does heat flow
out through the window? (Hint: The temperature drop across
the glass is very small.) (b) Estimate the difference in temper-
ature between the inner and outer glass surfaces.

13. In a certain solar house, energy from the Sun is stored in bar-
rels filled with water. In a particular winter stretch of five
cloudy days, 5.22 GJ are needed to maintain the inside of the
house at 22.0°C. Assuming that the water in the barrels is at
50.0°C, what volume of water is required?

14. A small electric immersion heater is used to boil 136 g of wa-
ter for a cup of instant coffee. The heater is labeled 220 watts.
Calculate the time required to bring this water from 23.5°C to
the boiling point, ignoring any heat losses.

15. How much water remains unfrozen after 50.4 kJ of heat have
been extracted from 258 g of liquid water initially at 0°C?

16. (a) Compute the possible increase in temperature for water
going over Niagara Falls, 49.4 m high. (b) What factors
would tend to prevent this possible rise?

17. A 146-g copper bowl contains 223 g of water; both bowl and
water are at 21.0°C. A very hot 314-g copper cylinder is
dropped into the water. This causes the water to boil, with
4.70 g being converted to steam, and the final temperature of
the entire system is 100°C. (a) How much heat was trans-
ferred to the water? (b) How much to the bowl? (c) What was
the original temperature of the cylinder?

18. Calculate the minimum amount of heat required to com-
pletely melt 130 g of silver initially at 16.0°C. Assume that
the specific heat does not change with temperature. See Ta-
bles 23-2 and 23-3.

19. An aluminum electric kettle of mass 0.560 kg contains a 2.40-
kW heating element. It is filled with 0.640 L of water at
12.0°C. How long will it take (a) for boiling to begin and (b)
for the kettle to boil dry? (Assume that the temperature of the
kettle does not exceed 100°C at any time.)

20. What mass of steam at 100°C must be mixed with 150 g of
ice at 0°C, in a thermally insulated container, to produce liq-
uid water at 50°C?

21. A 21.6-g copper ring has a diameter of 2.54000 cm at its tem-
perature of 0°C. An aluminum sphere has a diameter of
2.54533 cm at its temperature of 100°C. The sphere is placed
on top of the ring (Fig. 23-31), and the two are allowed to
come to thermal equilibrium, no heat being lost to the sur-
roundings. The sphere just passes through the ring at the equi-
librium temperature. Find the mass of the sphere.

22. (a) Two 50-g ice cubes are dropped into 200 g of water in a
glass. If the water were initially at a temperature of 25°C, and
if the ice came directly from a freezer at �15°C, what is the
final temperature of the drink? (b) If only one ice cube had
been used in (a), what would be the final temperature of the
drink? Neglect the heat capacity of the glass.
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Figure 23-28. Exercise 9.

Figure 23-29. Exercise 11.

Figure 23-30. Exercise 12.
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23-3 The First Law of Thermodynamics
10. Consider that 214 J of work are done on a system, and 293 J

of heat are extracted from the system. In the sense of the first
law of thermodynamics, what are the values (including alge-
braic signs) of (a) W, (b) Q, and (c) 

11. When a system is taken from state i to state f along the path
iaf in Fig. 23-29, it is found that J and J.
Along the path ibf, J. (a) What is W along the path
ibf ? (b) If J for the curved return path fi, what is Q
for this path? (c) Take J. What is (d ) If

J, find Q for process ib and process bf.Eint, b � 22
Eint, f?Eint, i � 10

W � �13
Q � 36

W � �20Q � 50

�Eint ?

23-4 Heat Capacity and Specific Heat
12. Icebergs in the North Atlantic present hazards to shipping (see

Fig. 23-30), causing the length of shipping routes to increase
by about 30% during the iceberg season. Strategies for de-
stroying icebergs include planting explosives, bombing, tor-
pedoing, shelling, ramming, and painting with lampblack.
Suppose that direct melting of the iceberg, by placing heat
sources in the ice, is tried. How much heat is required to melt
10% of a 210,000-metric-ton iceberg? (One metric ton �
1000 kg.)

i

fa

b

V

p



23. A certain substance has a molar mass of 51.4 g/mol. When
320 J of heat are added to a 37.1-g sample of this material, its
temperature rises from 26.1 to 42.0°C. (a) Find the specific
heat of the substance. (b) How many moles of the substance
are present? (c) Calculate the molar heat capacity of the sub-
stance.

23-5 The Work Done on or by an Ideal Gas
24. A sample of gas expands from 1.0 to 5.0 m3 while its pressure

decreases from 15 to 5.0 Pa. How much work is done on the
gas if its pressure changes with volume according to each of
the three processes shown in the pV diagram in Fig. 23-32?

26. Air that occupies 0.142 m3 at 103 kPa gauge pressure is ex-
panded isothermally to zero gauge pressure and then cooled
at constant pressure until it reaches its initial volume. Com-
pute the work done on the gas.

27. Calculate the work done by an external agent in compressing
1.12 mol of oxygen from a volume of 22.4 L and 1.32 atm
pressure to 15.3 L at the same temperature.

28. (a) One liter of gas with � � 1.32 is at 273 K and 1.00 atm
pressure. It is suddenly (adiabatically) compressed to half its
original volume. Find its final pressure and temperature. (b)
The gas is now cooled back to 273 K at constant pressure.
Find the final volume. (c) Find the total work done on the gas.

29. Gas occupies a volume of 4.33 L at a pressure of 1.17 atm
and a temperature of 310 K. It is compressed adiabatically to
a volume of 1.06 L. Determine (a) the final pressure and (b)
the final temperature, assuming the gas to be an ideal gas for
which � � 1.40. (c) How much work was done on the gas?

30. An air compressor takes air at 18.0°C and 1.00 atm pressure
and delivers compressed air at 2.30 atm pressure. The com-
pressor operates at 230 W of useful power. Assume that the
compressor operates adiabatically. (a) Find the temperature of
the compressed air. (b) How much compressed air, in liters, is
delivered each second?

23-6 The Internal Energy of an Ideal Gas
31. Calculate the total rotational kinetic energy of all the mole-

cules in 1 mole of air at 25.0°C.

32. Calculate the internal energy of 1 mole of an ideal gas at
250°C.

33. An ideal gas experiences an adiabatic compression from
kPa, m3, to kPa,
m3. (a) Calculate the value of �. (b) Find the final

temperature. (c) How many moles of gas are present? (d )
What is the total translational kinetic energy per mole before
and after the compression? (e) Calculate the ratio of the rms
speed before to that after the compression.

34. A cosmic-ray particle with energy 1.34 TeV is stopped in a
detecting tube that contains 0.120 mol of neon gas. Once this
energy is distributed among all the atoms, by how much is the
temperature of the neon increased?

23-7 Heat Capacities of an Ideal Gas
35. In an experiment, 1.35 mol of oxygen (O2) are heated at con-

stant pressure starting at 11.0°C. How much heat must be
added to the gas to double its volume?

36. Twelve grams of nitrogen (N2) in a steel tank are heated from
25.0 to 125°C. (a) How many moles of nitrogen are present?
(b) How much heat is transferred to the nitrogen?

37. A 4.34-mol sample of an ideal diatomic gas experiences a
temperature increase of 62.4 K under constant-pressure con-
ditions. (a) How much heat was added to the gas? (b) By how
much did the internal energy of the gas increase? (c) By how
much did the internal translational kinetic energy of the gas
increase?

38. The mass of a helium atom is 6.66 � 10�27 kg. Compute the
specific heat at constant volume for helium gas (in J/kg � K)
from the molar heat capacity at constant volume.

39. A container holds a mixture of three nonreacting gases: n1

moles of the first gas with molar specific heat at constant vol-
ume C1 , and so on. Find the molar specific heat at constant

V � 1.36
p � 1450T � �23.0	CV � 10.7p � 122
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Figure 23-31. Exercise 21.

Figure 23-32. Exercise 24.

Figure 23-33. Exercise 25.
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25. Suppose that a sample of gas expands from 2.0 to 8.0 m3

along the diagonal path in the pV diagram shown in Fig. 23-
33. It is then compressed back to 2.0 m3 along either path 1 or
path 2. Compute the net work done on the gas for the com-
plete cycle in each case.
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volume of the mixture, in terms of the molar specific heats
and quantities of the three separate gases.

23-8 Applications of the First Law of Thermodynamics
40. Gas within a chamber passes through the cycle shown in Fig.

23-34. Determine the net heat added to the gas during process
CA if and WBCA � �15 J.QBC � 0,QAB � 20 J,

�Eint , and (c) Q. (d) If one were to define an equivalent spe-
cific heat for this process, what would be its value?

46. Gas within a chamber undergoes the processes shown in the
pV diagram of Fig. 23-36. Calculate the net heat added to the
system during one complete cycle.
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Figure 23-34. Exercise 40.

Figure 23-35. Exercise 44.

Figure 23-36. Exercise 46.
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41. A sample of n moles of an ideal gas undergoes an isothermal
expansion. Find the heat flow into the gas in terms of the ini-
tial and final volumes and the temperature.

42. A quantity of ideal gas occupies an initial volume V0 at a
pressure p0 and a temperature T0 . It expands to volume V1 (a)
at constant pressure, (b) at constant temperature, and (c) adia-
batically. Graph each case on a pV diagram. In which case is
Q greatest? Least? In which case is W greatest? Least? In
which case is �Eint greatest? Least?

43. (a) A monatomic ideal gas initially at 19.0°C is suddenly
compressed to one-tenth its original volume. What is its tem-
perature after compression? (b) Make the same calculation for
a diatomic gas.

44. In Fig. 23-35, assume the following values:

For each of the three paths shown, find the value of Q, W, and
(Hint: Find P, V, T at points A, B, C. Assume an ideal

monatomic gas.)

45. A quantity of ideal monatomic gas consists of n moles ini-
tially at temperature T1 . The pressure and volume are then
slowly doubled in such a manner as to trace out a straight line
on the pV diagram. In terms of n, R, and T1 , find (a) W, (b)

Q � W.

pf � 1.60 � 105 Pa, Vf � 0.0270 m3.

pi � 2.20 � 105 Pa, Vi � 0.0120 m3,
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47. Let 20.9 J of heat be added to a particular ideal gas. As a re-
sult, its volume changes from 63.0 to 113 cm3 while the pres-
sure remains constant at 1.00 atm. (a) By how much does the
internal energy of the gas change? (b) If the quantity of gas
present is 2.00 � 10�3 mol, find the molar heat capacity at
constant pressure. (c) Find the molar heat capacity at constant
volume.

48. The temperature of 3.15 mol of an ideal polyatomic gas is
raised 52.0 K by each of three different processes: at constant
volume, at constant pressure, and by an adiabatic compres-
sion. Complete a table, showing for each process the heat
added, the work done on the gas, the change in internal en-
ergy of the gas, and the change in total translational kinetic
energy of the gas molecules.

PROBLEMS

1. (a) Calculate the rate of heat loss through a glass window of
area 1.4 m2 and thickness 3.0 mm if the outside temperature
is �20°F and the inside temperature is �72°F. (b) A storm
window is installed having the same thickness of glass but
with an air gap of 7.5 cm between the two windows. What
will be the corresponding rate of heat loss presuming that
conduction is the only important heat-loss mechanism?

2. A cylindrical silver rod of length 1.17 m and cross-sectional
area 4.76 cm2 is insulated to prevent heat loss through its sur-
face. The ends are maintained at a temperature difference of
100 C° by having one end in a water– ice mixture and the
other in boiling water and steam. (a) Find the rate at which
heat is transferred along the rod. (b) Calculate the rate at
which ice melts at the cold end.



3. Assuming k is constant, show that the radial rate of flow of
heat in a substance between two concentric spheres is given
by

where the inner sphere has a radius r1 and temperature T1 ,
and the outer sphere has a radius r2 and temperature T2 .

4. (a) Use the data in Exercise 1 to calculate the rate at which
heat flows out through the surface of the Earth. (b) Suppose
that this heat flux is due to the presence of a hot core in the
Earth and that this core has a radius of 3470 km. Assume also
that the material lying between the core and the surface of the
Earth contains no sources of heat and has an average thermal
conductivity of 4.2 W/m � K. Use the result of Problem 3 to
calculate the temperature of the core. (Assume that the
Earth’s surface is at 0°C.) The answer obtained is too high by
a factor of about 10. Why?

5. At low temperatures (below about 50 K), the thermal conduc-
tivity of a metal is proportional to the absolute temperature;
that is, where a is a constant with a numerical value
that depends on the particular metal. Show that the rate of
heat flow through a rod of length L and cross-sectional area A
whose ends are at temperatures T1 and T2 is given by

(Ignore heat loss from the surface.)

6. A container of water has been outdoors in cold weather until
a 5.0-cm-thick slab of ice has formed on its surface (Fig. 23-
37). The air above the ice is at �10°C. Calculate the rate of
formation of ice (in centimeters per hour) on the bottom sur-
face of the ice slab. Take the thermal conductivity and density
of ice to be 1.7 W/m � K and 0.92 g/cm3. Assume that no heat
flows through the walls of the container.

H �
aA

2L
 (T 1

2 � T 2
2).

k � aT,

H �
(T1 � T2)4�kr1r2

r2 � r1
,

in steady-state conditions between the inflow and the outflow
points. Find the specific heat of the liquid.

9. Water standing in the open at 32°C evaporates because of the
escape of some of the surface molecules. The heat of vapor-
ization is approximately equal to �n , where � is the average
energy of the escaping molecules and n is the number of mol-
ecules per kilogram. (a) Find �. (b) What is the ratio of � to
the average kinetic energy of H2O molecules, assuming that
the kinetic energy is related to temperature in the same way as
it is for gases?

10. A thermometer of mass 0.055 kg and heat capacity 46.1 J/K
reads 15.0°C. It is then completely immersed in 0.300 kg of
water and it comes to the same final temperature as the water.
If the thermometer reads 44.4°C, what was the temperature of
the water before insertion of the thermometer, neglecting
other heat losses?

11. From Fig. 23-11, estimate the amount of heat needed to raise
the temperature of 0.45 mol of carbon from 200 to 500 K.
(Hint: Approximate the actual curve in this region with a
straight-line segment).

12. The molar heat capacity of silver, measured at atmospheric
pressure, is found to vary with temperature between 50 and
100 K by the empirical equation

where C is in J/mol � K and T is in K. Calculate the quantity of
heat required to raise 316 g of silver from 50.0 to 90.0 K. The
molar mass of silver is 107.87 g/mol.

13. The gas in a cloud chamber at a temperature of 292 K under-
goes a rapid expansion. Assuming the process is adiabatic,
calculate the final temperature if � � 1.40 and the volume ex-
pansion ratio is 1.28.

14. Calculate the work done on n moles of a van der Waals gas in
an isothermal expansion from volume Vi to Vf .

15. A thin tube, sealed at both ends, is 1.00 m long. It lies hori-
zontally, the middle 10.0 cm containing mercury and the two
equal ends containing air at standard atmospheric pressure. If
the tube is now turned to a vertical position, by what amount
will the mercury be displaced? Assume that the process is (a)
isothermal and (b) adiabatic. (For air, � � 1.40.) Which as-
sumption is more reasonable?

16. A room of volume V is filled with diatomic ideal gas (air) at
temperature T1 and pressure p0 . The air is heated to a higher
temperature T2 , the pressure remaining constant at p0 because
the walls of the room are not airtight. Show that the internal
energy content of the air remaining in the room is the same at
T1 and T2 and that the energy supplied by the furnace to heat
the air has all gone to heat the air outside the room. If we add
no energy to the air, why bother to light the furnace? (Ignore
the furnace energy used to raise the temperature of the walls,
and consider only the energy used to raise the air tempera-
ture.)

17. The molar atomic mass of iodine is 127 g. A standing wave in
a tube filled with iodine gas at 400 K has nodes that are 
6.77 cm apart when the frequency is 1000 Hz. Determine
from these data whether iodine gas is monatomic or diatomic.

18. Figure 23-38a shows a cylinder containing gas and closed by
a movable piston. The cylinder is submerged in an ice–water
mixture. The piston is quickly pushed down from position 1

C � 0.318T � 0.00109T 2 � 0.628,
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Figure 23-37. Problem 6.
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7. A person makes a quantity of iced tea by mixing 520 g of the
hot tea (essentially water) with an equal mass of ice at 0°C.
What are the final temperature and mass of ice remaining if
the initial hot tea is at a temperature of (a) 90.0°C and (b)
70.0°C?

8. A flow calorimeter is used to measure the specific heat of a
liquid. Heat is added at a known rate to a stream of the liquid
as it passes through the calorimeter at a known rate. Then a
measurement of the resulting temperature difference between
the inflow and the outflow points of the liquid stream enables
us to compute the specific heat of the liquid. A liquid of den-
sity 0.85 g/cm3 flows through a calorimeter at the rate of 
8.2 cm3/s. Heat is added by means of a 250-W electric heat-
ing coil, and a temperature difference of 15 C° is established



to position 2. The piston is held at position 2 until the gas is
again at 0°C and then is slowly raised back to position 1. Fig-
ure 23-38b is a pV diagram for the process. If 122 g of ice are
melted during the cycle, how much work has been done on
the gas?

pressure at point A is 1.00 atm, find the pressure and the vol-
ume at points B and C. Use 1 atm � 1.013 � 105 Pa and R �
8.314 J/mol � K.

20. A cylinder has a well-fitted, 2.0-kg metal piston whose cross-
sectional area is 2.0 cm3 (Fig. 23-40). The cylinder contains
water and steam at constant temperature. The piston is ob-
served to fall slowly at a rate of 0.30 cm/s because heat flows
out of the cylinder through the cylinder walls. As this hap-
pens, some steam condenses in the chamber. The density of
the steam inside the chamber is 6.0 � 10�4 g/cm3 and the at-
mospheric pressure is 1.0 atm. (a) Calculate the rate of con-
densation of steam. (b) At what rate is heat leaving the cham-
ber? (c) What is the rate of change of internal energy of the
steam and water inside the chamber?
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Figure 23-38. Problem 18.

Figure 23-39. Problem 19.

Figure 23-40. Problem 20.
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19. An engine carries 1.00 mol of an ideal monatomic gas around
the cycle shown in Fig. 23-39. Process AB takes place at con-
stant volume, process BC is adiabatic, and process CA takes
place at a constant pressure. (a) Compute the heat Q, the
change in internal energy Eint , and the work W for each of the
three processes and for the cycle as a whole. (b) If the initial
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21. In a motorcycle engine, after combustion occurs in the top of
the cylinder, the piston is forced down as the mixture of
gaseous products undergoes an adiabatic expansion. Find the
average power involved in this expansion when the engine is
running at 4000 rpm, assuming that the gauge pressure imme-
diately after combustion is 15.0 atm, the initial volume is 
50.0 cm3, and the volume of the mixture at the bottom of the
stroke is 250 cm3. Assume that the gases are diatomic and that
the time involved in the expansion is one-half that of the total
cycle.

COMPUTER PROBLEMS

1. The theoretical specific heat capacity of a solid at temperature
T is given by the Debye formula

where U is a constant, called the Debye temperature, that de-
pends on the substance. (a) Numerically integrate this expres-
sion to find the specific heat capacity of aluminum at room
temperature, using Ualuminum � 420 K. Compare your result to
the measured value. (b) Generate a graph of the specific heat
capacity of aluminum for the range T � 0 to T � 500 K.

cV � 9 �4 � T

� �
3 ��

0

x

T 2

dx

ex /T � 1
�

��T

e� /T � 1 �,

2. The specific heat capacity of aluminum at low temperatures is
given by

A 1.0-kg block of aluminum originally at 20 K is placed into a
device (left in Roswell, New Mexico by aliens) that can extract
1000 J of heat energy from the aluminum every minute. (a) How
long before the temperature of the aluminum is 1 K? (b) What 
is the temperature of the aluminum after 12 hours? (c) Can the
aluminum ever be cooled to absolute zero with this device?

cV �
12� 4

5
R � T

420 K �
3

.
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