
497

22-1 THE ATOMIC NATURE OF
MATTER

Today no informed person doubts that all matter is made up
of atoms. It may come as a surprise to learn that universal
acceptance of the existence of atoms by the scientific com-
munity did not occur until the early 1900s. There were
many earlier speculations about the atomic nature of matter,
dating back to the ancient Greeks, but none were suffi-
ciently firmly supported by experiment to exclude other
points of view. Today the hypothesis that atoms exist is so
essential to our understanding of the nature of the world
around us that the Nobel laureate physicist Richard Feyn-
man could write: “If all scientific knowledge were to be de-
stroyed, I would hope that the knowledge that atoms exist
might be spared.”

The modern trail to belief in atoms can be said to have
started in 1828 when the Scottish botanist Robert Brown
observed through his microscope that tiny grains of pollen
suspended in water underwent ceaseless random motion.
We now call this phenomenon Brownian motion. Brown

also noted that this same “dancing” motion occurred when
particles of finely powdered coal, glass, rocks, and various
minerals were suspended in a fluid. The motion seemed to
be—and indeed proved to be—a fundamental property of
matter.

In 1905, Einstein (unaware of Brown’s report of his ob-
servations) predicted that the effect should occur and pre-
sented it as direct evidence that the fluid in which the parti-
cle is suspended is made up of atoms. A particle suspended
in a fluid is bombarded on all sides by the atoms of the
fluid, which are in constant motion of thermal agitation. Let
N be the average number of particle–atom collisions on
any one side of the particle during a short time interval �t.
On average, the same number of collisions will occur on
the other side of the particle. However, because the colli-
sions occur randomly, there will be fluctuations about this
average on each side. Thus in any particular interval �t
there will be slightly more collisions on one side of the par-
ticle than on the other. These random unbalances occur in
three dimensions so the bombarded particle, which typi-
cally is many orders of magnitude more massive than the
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atoms that bombard it, jitters about in the erratic manner
that characterizes Brownian motion.

A few years after Einstein’s analysis of Brownian mo-
tion, the French physical chemist Jean Baptiste Perrin
(1870–1942) made quantitative measurements of the ef-
fect. Figure 22-1 shows a sample of his data. It displays the
Brownian motion of a tiny particle of gum resin suspended
in water and viewed through a microscope. Perrin measured
the x, y coordinates of the moving particle every 30 s and
marked the particle’s position with a dot on a graph. (The
straight line segments in Fig. 22-1 were drawn simply to
connect the dots; the particle does not follow these lines but
moves in the same erratic fashion that characterizes the fig-
ure as a whole.)

The quantities that can be directly measured from the
so-called random walk pattern of Fig. 22-1 are �x and �y,
which are, respectively, the changes in the x and the y coor-
dinates of the particle between successive observations. Be-
cause �x and �y can be either positive or negative, their av-
erage value over many measurements is zero. The
significant parameters are the average values of the squares
of these quantities, [(�x)2]av and [(�y)2]av , which are inher-
ently positive.

Einstein derived the following expression for [(�x)2]av if
the bombarded particle is a sphere of radius a suspended in
a gas:

(22-1)

Here � (Greek “eta”) is a measure of the viscosity of the
gas (see Section 16-6). This quantity enters because, when
the suspended particle is given a “kick” because of an un-
balance in the atomic bombardment, the particle is slowed

[(�x)2]av �
RT

3��aNA
�t.

down by friction-like viscous forces. R in Eq. 22-1 is the
molar gas constant, T is the Kelvin temperature, and NA is
the Avogadro constant.

If NA were much larger than it actually is, the extent of
the Brownian motion would be reduced because the colli-
sion rates would be more closely equal on opposite sides of
the suspended particle. On the other hand, if NA were much
smaller than it actually is, the Brownian magnitude would
be increased. Thus, with [(�x)2]av measured, Eq. 22-1 can
be used to deduce NA. After collecting much data, of which
Fig. 22-1 is a small sample, Perrin found NA � 6 � 1023

molecules/mol, which agreed with results obtained at that
time by other methods. For this work, which was so com-
pelling a confirmation of the existence of atoms, Perrin 
received the 1926 Nobel Prize in physics. In his 1913 
book, Atoms, Perrin wrote enthusiastically about his
Brownian motion observations: “The atomic theory has tri-
umphed. Until recently still numerous, its adversaries, at
last overcome, now renounce one after another their mis-
givings . . . ”

Properties of the Ideal Gas
In Section 21-5 we described the macroscopic properties of
the ideal gas and showed that they were related by the ideal
gas law (pV � nRT ). Now that we have shown the evi-
dence that matter is really made up of atoms, let us look in
a little more detail at the atomic or microscopic properties
of the ideal gas. In most of the remaining sections of this
chapter we will rely on the ideal gas as our thermodynamic
system of choice.

1. The ideal gas consists of particles, which are in ran-
dom motion and obey Newton’s laws of motion. These par-
ticles may be single atoms or groups of atoms. In either
case, we will refer to the particles as “molecules.” The mol-
ecules move in all directions and with a wide range of
speeds.

2. The total number of molecules is “large.” When a
molecule rebounds from the wall of its container, it delivers
momentum to it. We assume that the number of molecules
is so large that the rate at which momentum is delivered to
any area A of the container wall is essentially constant.

3. The volume occupied by the molecules is a negligibly
small fraction of the volume occupied by the gas. We know
that when a gas condenses to liquid form, the volume of the
liquid is much smaller than that of the gas. Thus molecules
are “small” and our assumption is plausible.

4. No forces act on a molecule except during a colli-
sion, either with the container walls or with another mole-
cule. If we follow a particular molecule, it moves in a
zigzag path consisting of straight-line segments with con-
stant velocity between impulsive encounters.

5. All collisions are (i) elastic and (ii) of negligible du-
ration. Part (i) tells us that the total kinetic energy of the
molecules is a constant. Part (ii) tells us that the total poten-
tial energy of the molecules (which can only come into play
during a collision) is negligible.
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Figure 22-1. The Brownian motion of a tiny particle of gum
resin of radius about 3�m. The dots, which are connected by
straight lines, mark the positions of the particle at 30-s intervals.
The path of the particles is an example of a fractal, a curve for
which any small section resembles the curve as a whole. For ex-
ample, if we take any short 30-s segment and view it in smaller in-
tervals, perhaps 0.1 s, the plot of the motion in that single 30-s
segment would be similar to the entire figure.



In the ideal gas model, we take all molecules of a gas of
a particular type to be identical and thus to have identical
masses. The mass of a molecule is determined by adding
the masses of the atoms that make up the molecule. Atomic
masses (in units of u), which are often given on a periodic
chart of the elements, can be found in Appendix D. For ex-
ample, the mass of a molecule of sulfur dioxide (SO2) is
given in terms of the atomic masses of sulfur and oxygen as

m � m(S) � 2m(O) � 32.1 u � 2(16.0 u) � 64.1 u.

Instead of the number of molecules N, it is often more
convenient to describe the amount of a gas in terms of the
number of moles n; the relationship between these two
equivalent measures of the quantity of gas was given in Eq.
21-15, N � nNA, where NA is the Avogadro constant with a
value of NA � 6.02 � 1023 molecules/mol.

The mass of a mole of any substance, called the molar
mass M, is simply the mass of one molecule times the num-
ber of molecules per mole, or

M � mNA. (22-2)

The molar mass, measured in grams, is numerically equal
to the molecular mass, measured in u. Thus the molar mass
of SO2 is M � 64.1 g/mol � 0.0641 kg/mol.

In the rest of this chapter we show how the analysis of a
gas as a collection of molecules that behave according to
Newton’s laws gives us a connection between its macro-
scopic thermodynamic properties and such microscopic
properties as the average molecular speed or the average
distance a molecule travels between collisions.

22-2 A MOLECULAR VIEW OF
PRESSURE

In this section we associate the pressure exerted by a gas on
the walls of its container with the constant bombardment of
those walls by the molecules of the gas, a point of view per-
haps first advanced by the Swiss scientist Daniel Bernoulli
(1700–1782) in 1738. We will take the ideal gas as our sys-
tem and will derive an expression for the pressure it exerts
in terms of the properties of the molecules that make it up.

Consider N molecules of an ideal gas confined within a
cubical box of edge length L, as in Fig. 22-2. Call the faces
at right angles to the x axis A1 and A2 , each of area L2. Let
us focus our attention on a single molecule of mass m,
whose velocity we can resolve into components vx , vy ,
and vz . When this molecule strikes face A1, it rebounds with
its x component of velocity reversed, because all collisions
are assumed to be elastic; that is, vx : 	 vx . There is no ef-
fect on vy or vz , so that the change in the molecule’s mo-
mentum has only an x component, given by

(22-3)

Because the total momentum is conserved in the collision,
the momentum imparted to A1 is � 2mvx .

	mvx 	 (mvx) � 	2mvx .
 final momentum 	 initial momentum �

vB

Suppose that this molecule reaches A2 without striking
any other molecule on the way. The time required to cross
the cube is L /vx . (If the molecule strikes one of the other
faces of the box on the way to A2 , the x component of its
velocity does not change, nor does the transit time.) At A2 it
again has its x component of velocity reversed and returns
to A1. Assuming there are no collisions with other mole-
cules, the round trip takes a time 2L /vx , which is the time
between collisions with A1. The average impulsive force ex-
erted by this molecule on A1 is the transferred momentum
divided by the time interval between transfers, or

(22-4)

To obtain the total force on A1 —that is, the rate at which
momentum is imparted to A1 by all the gas molecules—we
must sum the quantity mv2

x /L for all the molecules. Then, to
find the pressure, we divide this force by the area of A1 —
namely, L 2. The pressure is therefore

(22-5)

where v1x is the x component of the velocity of molecule 1,
v2x is that of molecule 2, and so on. If N is the total number
of molecules in the container, then Nm is the total mass and
Nm/L3 is the density 
. Thus m/L3 � 
/N, and

. (22-6)

The quantity in parentheses in Eq. 22-6 is the average value
of v2

x for all the molecules in the container, which we repre-
sent by (v2

x)av . Then
p � 
(v2

x)av . (22-7)

For any molecule, v2 � v2
x � v2

y � v2
z . Because we have

many molecules and because they are moving entirely at
random, the average values of v2

x , v2
y , and v2

z are equal, and
the value of each is exactly one-third the average value of

p � 
 � v2
1x � v2

2x � ���

N �

�
m

L3  (v2
1x � v2

2x � ���),

p �
1

L2

mv2
1x � mv2

2x � ���

L

Fx �
2mvx

2L /vx

�
mv2

x

L
.
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Figure 22-2. A cubical box of edge L containing an ideal
gas. A molecule of the gas is shown moving with velocity to-
ward side A1.
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v2. There is no preference among the molecules for motion
along any one of the three axes. Hence , so
that Eq. 22-7 becomes

. (22-8)

Although we derived this result by neglecting collisions
between molecules, the result is true even when we con-
sider collisions. Because of the exchange of velocities in an
elastic collision between identical particles, there will al-
ways be a molecule that collides with A2 with momentum
mvx corresponding to the molecule that left A1 with this
same momentum. Also, the time spent during collisions is
negligible compared to the time spent between collisions.
Hence our neglect of collisions is merely a convenient de-
vice for calculation. Similarly, we could have chosen a con-
tainer of any shape: the cube merely simplifies the calcula-
tion. Although we have calculated the pressure exerted only
on the side A1, it follows from Pascal’s law that the pressure
is the same on all sides and everywhere in the interior.
(This is true only if the density of the gas is uniform. In a
large sample of gas, gravitational effects might be signifi-
cant, and we should take into account the varying density.
See Section 15-3 and Problem 19 of Chapter 21.) 

The square root of (v2)av is called the root-mean-square
speed of the molecules and is a useful measure of average
molecular speed. Using Eq. 22-8, we can calculate the root-
mean-square speed from measured values of the pressure
and density of the gas. Thus

(22-9)

In Eq. 22-8 we relate a macroscopic quantity (the pres-
sure p) to an average value of a microscopic quantity, that
is, to (v2)av or v2

rms.

Sample Problem 22-1. Calculate the root-mean-square
speed of hydrogen molecules at 0.00°C and 1.00 atm pressure, as-
suming hydrogen to be an ideal gas. Under these conditions hy-
drogen has a density 
 of 8.99 � 10	2 kg/m3.

Solution Since p � 1.00 atm � 1.01 � 105 Pa,

This is equal to 4120 mi/h, or just slightly more than a mile per
second.

Table 22-1 gives the results of similar calculations for
some selected gases at room temperature. The values of vrms

in that table refer to the speeds of the molecules between
collisions. Because of these collisions, gas molecules are
continuously changing direction and do not move very
rapidly in any selected direction. This contrast between in-
tercollision speeds and outward diffusion speeds is some-
times said to account for the noticeable time lag between

vrms � √ 3p



� √ 3(1.01 � 105 Pa)

8.99 � 10	2 kg/m3 � 1840 m/s.

vrms � √(v2)av � √ 3p



.

p � 1
3
(v2)av

(v2
x)av � 1

3 (v
2)av

opening a perfume bottle at one end of a room and smelling
perfume at the other end. However, the fact that one smells
perfume at all can be shown to be due to unavoidable con-
vection currents in the air of the room. If these currents
could be eliminated, the time lag would be very much
greater indeed. The diffusion speed of one gas into another
is very much less than the rms speed of the diffusing mole-
cules.

Sample Problem 22-2. The cubical box of Fig. 22-2 is
10 cm on edge and contains oxygen at a pressure of 1.0 atm and a
temperature T � 300 K. (a) How many moles of oxygen are in the
box? (b) How many molecules? (c) At what approximate rate do
oxygen molecules strike one face of the box? (Hint: For simplic-
ity, assume that the molecules all move with the same speed vrms,
that they do not collide with each other, and that one-third of them
move back and forth between each pair of opposing faces of the
cube.)

Solution (a) Solving the ideal gas equation (Eq. 21-17) for n, the
number of moles, we obtain

Here we have replaced V by L3 and used the fact that, in SI units,
1 atm � 1.01 � 105 Pa.
(b) The number of molecules follows from Eq. 21-15:

(c) Consider the back-and forth motion of a single molecule. Its
average time between collisions on a particular face is 2L/vrms and
the rate at which it strikes that face is the inverse of this, or
vrms/2L. If the box contains N molecules, on our assumption of
them are doing the same thing. So the total rate at which mole-
cules hit the face in question is ( )(vrms /2L). From Table 22-1
we see that vrms for oxygen at 300 K is 483 m/s. Thus

A more rigorous analysis, taking into account the varying speeds
and directions of the molecules, yields 2.8 � 1025 collisions/s.
Thus our approximate answer is not too far removed from the cor-
rect answer. In solving problems in physics, we often make

� 2.0 � 1025 collisions /s.

Rate �
Nvrms

6L
�

(2.5 � 1022 molecules)(483 m/s)

(6)(0.1 m)

1
3 N

1
3 N

� 2.5 � 1022 molecules.
N � nNA � (0.041 mol)(6.02 � 1023 molecules/mol)

n �
pV

RT
�

(1.01 � 105 Pa)(0.10 m)3

(8.31 J/mol�K)(300 K)
� 0.041 mol.
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Molecular Mass m vrms

Gas (u) (m/s)

Hydrogen 2.0 1920
Helium 4.0 1370
Water vapor 18.0 645
Nitrogen 28.0 517
Oxygen 32.0 483
Carbon dioxide 44.0 412
Sulfur dioxide 64.1 342

Table 22-1 Some Molecular Speeds at Room
Temperature (300 K)



grossly simplifying assumptions if we seek only an approximate
answer.

Sample Problem 22-3. Natural uranium consists pri-
marily of two isotopes, fissionable 235U (0.7% abundance) and
practically nonfissionable 238U (99.3%). (a) In UF6 (uranium hexa-
fluoride) gas containing a natural mixture of these two isotopes at
a common temperature T, calculate the ratio of the rms speed of
the gas molecules containing 235U to those containing 238U. (b) If
this gas is passed through a porous barrier, the faster molecules
emerge first, and the resulting abundances of the two kinds of gas
molecules on the far side of the barrier are proportional to their
rms speeds. What will be the relative abundance of gas molecules
containing 235U after the passage of the gas through such a bar-
rier? (c) How many times must the gas be passed through such a
barrier before the abundance of 235U reaches 3%? This abundance
is typical of the enrichment of 235U needed for the uranium fuel in
fission reactors.

Solution (a) Consider two samples of UF6 gas, identical except
that one contains only 235U and the other only 238U. The molecular
masses of 235UF6 and 238UF6 are m(235) � 235 u � 6(19 u) �
349 u and m(238) � 238 u � 6(19 u) � 352 u. The ratio of densi-
ties—all other factors being equal—is the ratio of the molecular
masses so, from Eq. 22-9,

(b) The relative abundance of the two kinds of gas molecules in
the mixed gas sample is the same as the relative abundance of the
uranium isotopes they contain. On entering the barrier this ratio is
0.007/0.993 � 0.00705. On our assumption, passage through the
barrier increases this ratio by the factor calculated in (a), so

ratio after 1 pass � 0.00705 � 1.0043 � 0.00708.

(c) The gas entering the first barrier has an isotope ratio, calcu-
lated in (b), of 0.00705. After passage through a barrier n times,
we wish the isotope ratio of the emerging gas to be 0.030/0.97 �
0.03093. There is an increase in this ratio of 1.0043 at each pas-
sage, so

(1.0043)n (0.00705) � 0.03093.

If we solve this relationship for n (by taking logarithms) we find
n � 350.

22-3 THE MEAN FREE PATH

Suppose that we could follow the zigzag path (Fig. 22-3) of
a typical molecule in a gas as it moves around, colliding
with other molecules. In particular, let us measure the
straight-line distance our chosen molecule travels between
collisions and find its average value. We call this quantity
the molecule’s mean free path �. Because our chosen mole-
cule is not “special,” all molecules of the gas have the same
mean free path. Of course, we cannot follow a single mole-
cule and make these measurements, but in this section we
will calculate the outcome of such measurements.

vrms(235)

vrms(238)
� √ m(238)

m(235)
� √ 352 u

349 u
� 1.0043.

Consider the molecules of a gas to be spheres of diame-
ter d. A collision will take place when the centers of two
such molecules approach within a distance d of each other.
An equivalent description of collisions made by any chosen
molecule is to regard that molecule as having a diameter 2d
and all other molecules as point particles; see Fig. 22-4.

Let us temporarily assume that our molecule of diame-
ter 2d exerts no forces on the point molecules among which
it moves. In time t our “fat” molecule would sweep out a
cylinder of cross-sectional area �d 2, length Lcyl � vt
(where v is the speed of the molecule), and volume Vcyl �
area � length � (�d 2)(vt). Let the volume of the box
within which the gas is confined be V and let the box con-
tain N molecules. The number of (point) molecules in the
cylinder of Fig. 22-5 is then

(22-10)

Since our moving molecule and the point molecules do ex-
ert forces on each other, this number is also the number of
collisions experienced by our moving molecule in time t.

Ncyl � N
Vcyl

V
�

N�d 2vt

V
.
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Figure 22-3. A molecule traveling through a gas, colliding
with other molecules in its path. Of course, the other molecules
are themselves moving and experiencing collisions.

Figure 22-4. (a) A collision occurs when the centers of two
molecules come within a distance d of each other, where d is the
molecular diameter. (b) An equivalent but more convenient repre-
sentation is to think of the moving molecule as having a diameter
2d, all other molecules being points.

m

m

m

2d

d

d

d

m

(a) (b)



The cylinder of Fig. 22-5 is, in fact, a broken one, changing
direction with every collision.

The mean free path � is the total distance covered by the
moving molecule in time t divided by the number of colli-
sions that it makes in that time, or

(22-11)

As Eq. 21-13 shows, we can write the ideal gas law in the
form pV � NkT, in which k is the Boltzmann constant.
From this equation, V/N � kT/p and Eq. 22-11 becomes

(22-12)

Equation 22-12 is based on the assumption of a single
moving molecule hitting stationary targets. Actually, the
molecule that we are following hits moving targets. When
all molecules are moving, the two v’s in Eq. 22-11 are not
the same and thus do not cancel. The v in the numerator
( ) is the average molecular speed measured with re-
spect to the box in which the gas is contained. The v in the
denominator ( ) is the average relative speed with re-
spect to the other molecules. It is this relative speed that de-
termines the collision rate.

We can see qualitatively that vrel 
 vav as follows. Two
molecules of speed v moving toward each other have vrel �
2v, which is greater than v. You can easily show that two
molecules moving at right angles to each other have

which is also greater than v. Two molecules
moving with speed v in the same direction have vrel � 0,
which, of course, is less than v. If the angle between the ve-
locities of the colliding molecules (assuming them to have
the same speed) is between 0° and 60°, then 0 � vrel � v. If
the angle is between 60° and 180° (the latter corresponding
to a head-on collision), then v � vrel � 2v. Because the col-
lisions are random, there is a greater probability that the
collision angle will be in the range of 60° to 180° than in
the range of 0° to 60°. Thus the relative speed will on the
average be greater than v.

vrel � √2 v,

� vrel

� vav

� �
kT

�d 2p
.

� �
Lcyl

Ncyl
�

vtV

N�d 2vt
�

V

N�d 2 .

A similar conclusion holds on the average if the mole-
cules have a distribution of different speeds. A full calcula-
tion, taking into account the actual speed distribution of the
molecules, gives . As a result, Eq. 22-12 be-
comes

(mean free path). (22-13)

This equation relates two microscopic quantities (� and d)
to two macroscopic quantities (p and T ).

For air molecules at sea level, � � 10	 7 m or 0.1 �m.
At an altitude of 100 km, the density of air has dropped to
such an extent that � � 16 cm. At 300 km, � � 20 km. In
much scientific and industrial work it is necessary to pump
the air out of a sealed container, producing a vacuum. Once
the pressure has been reduced to the extent that the mean
free path calculated from Eq. 22-13 exceeds the dimensions
of the container, the concept of mean free path loses its sig-
nificance; at that stage molecules collide more often with
the container walls than with each other.

The ability of gases to conduct heat, the viscosity of
gases, and the rate at which gases diffuse from regions of
high concentration to regions of lower concentration are
matters of considerable interest, both in science and in in-
dustry. All are proportional to the mean free path of the gas
molecules. Designers of high-energy particle accelerators,
such as those at CERN and Fermilab, go to great lengths to
remove as much air as possible from the huge circular rings
around which the accelerating particles must circulate thou-
sands of times without colliding with a residual air mole-
cule.

Sample Problem 22-4. What are (a) the mean free
path and (b) the average collision rate for nitrogen at room tem-
perature (T � 300 K) and atmospheric pressure ( p � 1.01 �
105 Pa)? A nitrogen molecule has an effective diameter of d �
3.15 � 10	 10 m and, for the conditions stated, an average speed
vav � 478 m/s.

Solution (a) From Eq. 22-13,

This is about 300 molecular diameters. On average, the distance
between molecules in a gas is equal to the cube root of the volume
occupied by a single molecule or (V/N )1/3. From Eq. 21-13 ( pV �
NkT ), we can write this as (kT/p)1/3, which proves to be about
3.4 � 10	 9 m. This is about 11 molecular diameters. In one mean
free path � a given molecule will pass about 27 other molecules
before experiencing a collision.
(b) The average collision rate is the average speed divided by the
mean free path, or

� 5.1 � 109 collisions/second

rate �
vav

�
�

478 m/s

9.3 � 10	8 m/collision

� 9.3 � 10	8 m.

� �
kT

√2�d 2p
�

(1.38 � 10	23 J/K)(300 K)

(√2�)(3.15 � 10	10 m)2(1.01 � 105 Pa)

� �
kT

√2�d 2p

vrel � √2 vav
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2d

Figure 22-5. A molecule with an equivalent diameter 2d (as
in Fig. 22-4b) traveling with speed v sweeps out a cylinder of base
area �d2 and length vt in a time t. The number of collisions suf-
fered by the molecule in this time is equal to the number of mole-
cules (regarded as points) that lie within the cylinder. In actuality,
this cylinder would be bent many times as the direction of the
molecule’s path is changed by collisions; for convenience that
path has been straightened.



On average, every nitrogen molecule makes more than 5 billion
collisions per second!

22-4 THE DISTRIBUTION OF
MOLECULAR SPEEDS

We can calculate vrms, the root-mean-square speed of the
molecules of an ideal gas, using Eq. 22-9. However, sup-
pose we want to know how the speeds of the molecules are
distributed about this average. It is not likely that the mole-
cules would all have this same speed, because collisions be-
tween molecules would soon upset this situation. Speeds ei-
ther close to zero or very much greater than vrms are also
relatively unlikely; such speeds would require a sequence
of preferential collisions that would be very improbable in a
condition of thermal equilibrium.

The Scottish physicist James Clerk Maxwell
(1831–1879) first solved the problem of the distribution of
speeds in a gas containing a large number of molecules.
The Maxwell speed distribution—as it is called—for a
sample of gas at temperature T containing N molecules,
each of mass m, is

(22-14)

Figure 22-6 shows a plot of this equation for molecules of
oxygen at room temperature.

The interpretation of N(v) in Eq. 22-14 is that the (di-
mensionless) product N(v) dv gives the number of mole-
cules having speeds in the range v to v � dv. Graphically,
this product for v � 600 m/s is represented in Fig. 22-6 as
the shaded area of the narrow vertical strip located at that
speed.

Avoid the temptation to interpret N(v) as “the number of
molecules having a speed v.” This interpretation is mean-
ingless because, although the number of molecules may be

N(v) � 4�N � m

2�kT �
3/2

v2e	mv2/2kT.

large, it cannot be infinite but the number of available
speeds is infinite; they cannot be matched up on a one-to-
one basis. The probability that a molecule has a precisely
stated speed, such as 600.34326759 . . . m/s, is exactly
zero. However, the number of molecules whose speeds lie
in a narrow range such as 600 m/s to 602 m/s has a definite
nonzero value.

If we add up (integrate) the numbers of molecules in
each differential speed range dv from v � 0 to v : �, we
must obtain N, the total number in the system. That is, it
must be true that

(22-15)

Note that the integral in Eq. 22-15 can be interpreted as the
total area under the speed distribution curve of Fig. 22-6.
The number of molecules whose speeds lie between any
given values, such as v1 and v2 , is equal to the area under
the speed distribution curve between those limits.

As the temperature increases, the average speed of the
molecules increases, so the speed distribution curve must
become broader. Because the area under the distribution
curve (which is the total number of molecules) remains the
same, the distribution curve must also flatten as the tem-
perature rises. Figure 22-7 shows how the speed distribu-
tion curve for oxygen molecules at T � 80 K is both
broadened and flattened as the temperature is increased to
300 K.

The distribution of speeds of molecules in a liquid re-
sembles that of Fig. 22-6. This distribution allows us to un-
derstand why water in a saucer will eventually evaporate
completely. The speed needed for a molecule of water to

N � ��

0
N(v) dv.
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Figure 22-6. The Maxwell speed distribution for the mole-
cules of a gas. The plotted curve is characteristic of oxygen mole-
cules at T � 300 K. The number of molecules with speeds in any
interval dv is N(v)dv, indicated by the narrow shaded strip. The
number with speeds between any limits v1 and v2 is given by the
area under the curve between those limits.
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escape from the water surface would be very far out indeed
on the tail of a distribution curve like that of Fig. 22-6.
Only a very small number of molecules would have speeds
above this threshold. The escape of these few energetic
molecules reduces the average kinetic energy of the remain-
ing molecules, leaving the water at a lower temperature.
This explains why evaporation is a cooling process. If the
saucer is not thermally isolated from its surroundings, how-
ever, energy will flow into the water from these surround-
ings, maintaining the water in thermal equilibrium with its
environment. Energy will flow into the water as heat to
compensate for the energy carried away by the escaping
“fast” molecules; this process will continue until there is no
more water.

Equation 22-14 also shows that the distribution of mole-
cular speeds depends on the mass of the molecule as well
as on the temperature. At any given temperature, the
smaller the mass of a molecule, the faster it moves. Thus
hydrogen is more likely to escape from the Earth’s upper
atmosphere than oxygen or nitrogen.

Consequences of the Speed Distribution
We can obtain much useful information from Eq. 22-14, the
speed distribution equation.

1. The most probable speed vp . This quantity is the
speed at which N(v) of Eq. 22-14 has its maximum value.
We find it by requiring that dN/dv � 0 and solving for v. As
you should verify, the result proves to be

(22-16)

Here we have made the substitutions k � R/NA (see Eq. 21-
17) and m � M/NA (see Eq. 22-2).

2. The average speed vav. To find the average speed of
the molecules, we add up all the individual speeds and di-
vide by the number of molecules. This is most simply done
by summing the products of the speed v in each speed inter-
val and the number N(v) dv in that interval. Thus

(22-17)

The next step is to substitute for N(v) from Eq. 22-14 and
evaluate the integral. The result is

(22-18)

3. The root-mean square speed vrms. We encountered
this quantity earlier, in Eq. 22-9. To find it from the speed
distribution equation we proceed as above except that we
find the average value of v2 (rather than the average value
of v). This leads, after another integration, to

(22-19)(v2)av �
1

N
��

0
v2 N(v) dv �

3kT

m
.

vav � √ 8kT

�m
� √ 8RT

�M
.

vav �
1

N
��

0
vN(v) dv.

vp � √ 2kT

m
� √ 2RT

M
.

The root-mean-square speed is the square root of this quan-
tity, or

(22-20)

4. The average translational kinetic energy per mole-
cule Ktrans. Note first that, because we assume that our ideal
gas is monatomic, translational kinetic energy is the only
kind of energy that the molecules can have. An essentially
point molecule cannot have energy of rotation, and we as-
sume that there are no changes in the internal energies of
the molecules.

To find Ktrans, we must first find the total translational ki-
netic energy of the set of N molecules and then divide by N.
The total energy K is

Replacing v2
rms from Eq. 22-20 and dividing by N, the total

number of molecules, leads to

(22-21)

We will have more to say about this important relation in
Chapter 23.

5. The ideal gas law. We have derived two equations for
vrms , the root-mean-square velocity of the molecules, Eq.
22-9 and Eq. 22-20. Setting these equations equal yields

The density 
 can be written as nM/V. With this substitution
the above equality reduces to pV � nRT. Thus we have re-
covered the ideal gas law from our investigation into the
molecular speeds.

Experimental Verification of the Maxwell
Speed Distribution
Maxwell derived his speed distribution law (Eq. 22-14) in
1860. At that early date it was not possible to check this law
by direct measurement and it was not until about 1920 that
the first attempts were made. However, techniques im-
proved rapidly and, in 1955, R. C. Miller and P. Kusch of
Columbia University provided a high-precision experimen-
tal verification of Maxwell’s prediction.

Their apparatus is illustrated in Fig. 22-8. The walls 
of oven O, containing some thallium metal, were heated,
in one set of experiments, to a uniform temperature of 
870 � 4 K. At this temperature thallium vapor, at a pres-
sure of 3.2 � 10	 3 torr, fills the oven. Some molecules of
thallium vapor escape from slit S into the highly evacuated
space outside the oven, falling on the rotating cylinder R.

v2
rms �

3p



�

3RT

M
.

Ktrans � 3
2 kT.

� 1
2 mNv2

rms.

� 1
2 mN

(v2
1 � v2

2 � ��� � v2
N)

N

K � 1
2 m(v2

1 � v2
2 � ��� � v2

N)

vrms � √(v2)av � √ 3kT

m
� √ 3RT

M
.
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This cylinder, of length L, has about 700 helical grooves cut
into it, only one of which is shown in Fig. 22-8. For a given
angular speed � of the cylinder, only molecules of a
sharply defined speed v can pass along the grooves without
striking the walls. The speed v can be found from

or

in which � (see Fig. 22-8) is the angular displacement be-
tween the entrance and the exit of a helical groove. Thus
the rotating cylinder is a velocity selector, in which the
speed is selected by the (controllable) angular speed �. The
beam intensity is recorded by detector D as a function of
the selected speed v. Figure 22-9 shows the remarkable
agreement between theory (the solid line) and experiment
(the open and filled circles) for thallium vapor.

The distribution of speeds in the beam (as distinguished
from the distribution of speeds in the oven) is not propor-
tional to as in Eq. 22-14, but to Con-
sider a group of molecules in the oven whose speeds lie
within a certain small range v1 to v1 � �v, where v1 is less
than the most probable speed vp. We can always find an-
other equal speed interval �v, extending from v2 to v2 � �v,
where v2 , which will be greater than vp , is chosen so that
the two speed intervals contain the same number of mole-
cules. However, more molecules in the higher interval than
in the lower will escape from slit S to form the beam,
because molecules in the higher interval “bombard” the 
slit with a greater frequency, by precisely the factor v2/v1.
Thus, other things being equal, fast molecules are favored
in escaping from the oven, just in proportion to their
speeds, and the molecules in the beam have a v3 rather than
a v2 distribution. This effect is included in the theoretical
curve of Fig. 22-9.

v3e	mv2/2kT.v2e	mv2/2kT,

v �
L�

�
,

time of travel along the groove �
L

v
�

�

�

Sample Problem 22-5. The speeds of ten particles in
m/s are 0, 1.0, 2.0, 3.0, 3.0, 3.0, 4.0, 4.0, 5.0, and 6.0. Find (a) the
average speed, (b) the root-mean-square speed, and (c) the most
probable speed of these particles.

Solution (a) The average speed is found from

� 3.0 � 4.0 � 4.0 � 5.0 � 6.0]

� 3.1 m/s.

(b) The mean-square speed is the average value of v2:

and the root-mean-square speed is

(c) Of the ten particles, three have speeds of 3.0 m/s, two have
speeds of 4.0 m/s, and each of the other five has a different speed.
Hence the most probable speed vp of a particle is

vp � 3.0 m/s.

Sample Problem 22-6. A container filled with N mole-
cules of oxygen gas is maintained at 300 K. What fraction of the
molecules has speeds in the range 599–601 m/s? The molar mass
M of oxygen is 0.032 kg/mol.

vrms � √(v2)av � √12.5 m2/s2 � 3.5 m/s.

� 12.5 m2/s2,

� (3.0)2 � (4.0)2 � (4.0)2 � (5.0)2 � (6.0)2]

(v2)av �
1

N �
N

n�1
v2

n �
1

10
 [0 � (1.0)2 � (2.0)2 � (3.0)2 � (3.0)2

vav �
1

N �
N

n�1
vn �

1

10
 [0 � 1.0 � 2.0 � 3.0 � 3.0
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Figure 22-8. Apparatus used by Miller and Kusch to verify
the Maxwell speed distribution. A beam of thallium molecules
leaves the oven O through the slit S, travels through the helical
groove in the rotating cylinder R, and strikes the detector D. The
angular velocity � of the cylinder can be varied so that molecules
of differing speeds will pass through the cylinder.

L

Axis

Pump

D
R

SO

Figure 22-9. The results of the experiment to verify the
Maxwell speed distribution. The open circles show data taken
with the oven temperature at T � 870 K, and the filled circles
show data at T � 944 K. When the distributions are plotted
against v/vp, the two distributions should be identical. The solid
curve is the Maxwell distribution. The data agree remarkably well
with the curve.
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Solution This speed interval �v ( m/s) is so small that we can
treat it as a differential dv. The number of molecules in this inter-
val is N(v)dv, and the fraction in that interval is f � N(v)dv/N,
where N(v) is to be evaluated at v � 600 m/s, the midpoint of the
range; see the narrow shaded strip in Fig. 22-6. Using Eq. 22-14
with the substitution m/k � M/R, we find the fraction

Substituting the given numerical values yields

f � 2.6 � 10	 3 or 0.26%.

At room temperature, 0.26% of the oxygen molecules have speeds
that lie in the narrow range between 599 and 601 m/s. If the
shaded strip of Fig. 22-6 were drawn to the scale of this problem,
it would be a very thin strip indeed.

Sample Problem 22-7. Calculate (a) the most proba-
ble speed, (b) the average speed, and (c) the rms speed for oxygen
molecules at T � 300 K.

Solution (a) From Eq. 22-16 we have

(b) From Eq. 22-18 we have

(c) From Eq. 22-20 we have

From the equations we have used note that, for any gas at a given
temperature,

vp :vav :vrms � 1 :1.128 :1.225.

22-5 THE DISTRIBUTION OF
MOLECULAR ENERGIES

An alternative description of the motion of molecules can
be obtained if we look for the distribution in energy rather
than in speed. That is, we seek the distribution N(E), such
that N(E)dE gives the number of molecules with energies
between E and E � dE.

This problem was first solved by Maxwell. We derive
the result, called the Maxwell–Boltzmann energy distribu-
tion, in the special case that translational kinetic energy is
the only form of energy that a molecule can have.

Let us consider again the situation of Sample Problem
22-6, in which we obtained the fraction of oxygen mole-
cules having speeds between 599 and 601 m/s. We found
that 0.26% of the molecules in a container at a temperature
of 300 K have speeds in that range. An oxygen molecule
with a speed of 599 m/s has a kinetic energy of 9.54 �

� 483 m/s.vrms � √ 3RT

M
� √ (3)(8.31 J/mol �K)(300 K)

0.032 kg/mol

� 445 m/s.vav � √ 8RT

�M
� √ (8)(8.31 J/mol �K)(300 K)

(�)(0.032 kg/mol)

� 395 m/s.vp � √ 2RT

M
� √ (2)(8.31 J/mol �K)(300 K)

0.032 kg/mol

f �
N(v) dv

N
� 4� � M

2�RT �
3/2

v2e	Mv2/2RT dv.

� 2 10	 21 J, and one with a speed of 601 m/s has a kinetic en-
ergy of 9.60 � 10	 21 J. What fraction of the oxygen mole-
cules has kinetic energies in the range of 9.54 � 10	 21 to
9.60 � 10	 21 J?

A bit of thought should convince you that this fraction
must also be 0.26%. It makes no difference whether we
count the molecules by their speeds or by their kinetic ener-
gies; as long as we set the lower and upper limits of the in-
terval to have corresponding speeds and kinetic energies,
we count the same number of molecules between the limits.
That is, the number with kinetic energies between E and 
E � dE is the same as the number with speeds between v and
v � dv. Mathematically, we express this conclusion as

N(E ) dE � N(v) dv, (22-22)
or

(22-23)

Since the energy is only kinetic, we must have or
and thus

(22-24)

Substituting Eqs. 22-14 and 22-24 into Eq. 22-23, we obtain

(22-25)

Equation 22-25 is the Maxwell–Boltzmann energy dis-
tribution. In deriving this result, we have assumed that the
gas molecules can have only translational kinetic energy.
This distribution therefore applies only to a monatomic gas.
In the case of gases with more complex molecules, other
factors (such as rotational kinetic energy) will be present in
Eq. 22-25. The factor e	 E/kT, however, is a general feature
of the Maxwell–Boltzmann energy distribution that is pres-
ent no matter what the form of the energy E. This factor
which is generally known as the Boltzmann factor, is often
taken as a rough estimate of the relative probability for a
particle to have an energy E in a collection of particles
characterized by a temperature T.

Using Eq. 22-25, we can calculate the fraction of the
gas molecules having energies between E and E � dE,
which is given by N(E)dE/N. As before, N is the total num-
ber of molecules, which is determined from

(22-26)

One interesting feature of the Maxwell–Boltzmann en-
ergy distribution is that it is precisely the same for any gas
at a given temperature, no matter what the mass of the mol-
ecules (in contrast to the Maxwell speed distribution, Eq.
22-14, in which the mass appears explicitly). Even a “gas”
of electrons, to the extent they can be treated as classical
particles, has the same energy distribution as a gas of heavy

N � ��

0
N(E ) dE.

N(E) �
2N

√�

1

(kT)3/2
E 1/2 e	E/kT.

dv

dE
� √ 2

m
 (1

2 E	1/2).

v � √2E/m,
E � 1

2 mv2

N(E) � N(v) 
dv

dE
.
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atoms. The effect of increasing the mass m by some factor
is to reduce v2 by the same factor, so that the product mv2,
and thus the kinetic energy, remains the same.

For a simple application of the Boltzmann factor, con-
sider a long, gas-filled vertical container with its bottom
resting on the Earth’s surface. We’ll assume that the gas in
the container is in thermal equilibrium at a uniform temper-
ature T. A molecule at a height y above the bottom has en-
ergy E0 � mgy, where E0 is the energy of a similar mole-
cule at the bottom of the container. Using the Boltzmann
factor e	E/kT, we can deduce that the number of molecules
at height y is, compared with the number at y � 0,

(22-27)

or
N(y) � N0e	mgy/kT (22-28)

where N0 � N(0). With kT � pV/N from the ideal gas law,
the factor m/kT in the exponent can be written as mN/pV �

/p, where 
 is the density of the gas. Because we have as-
sumed the gas to be at a uniform temperature, we must
have 
/p � 
0/p0 , with 
0 and p0 being the values of the
density and pressure at the Earth’s surface. Furthermore,
because the number of molecules in a small volume ele-
ment at any height is proportional to the density at that
height, which is in turn proportional to the pressure, we can
write Eq. 22-28 as

. (22-29)

Equation 22-29 is identical with Eq. 15-12 for the pressure
in the atmosphere as a function of the height above the
Earth’s surface. We also derived Eq. 15-12 under the as-
sumption of a uniform temperature for the atmosphere, and
it is comforting that the dynamic approach used in Chapter
15 and the present statistical approach give the same result.

Sample Problem 22-8. Find (a) the average energy
and (b) the most probable energy of a gas in thermal equilibrium
at temperature T.
(a) The average energy Eav can be written, in analogy with Eq.
22-17, as

.

Substituting Eq. 22-25, we obtain

. (22-30)

To evaluate this integral, make the substitution x2 � E/kT and con-
vert it to a standard form for a definite integral given in Appendix
I. The result, which you should verify, is

(22-31)

a result that agrees precisely with Eq. 22-21 for this case in which
we have assumed kinetic energy to be the only type of energy that
the gas molecules may have.

Eav � 3
2 kT

Eav �
2

√� (kT )3/2 ��

0
E 3/2e	E/kT dE

Eav �
1

N
��

0
E N(E ) dE

p(y) � p0e	mgy/kT � p0e	gy
0/p0

N(y)

N(0)
�

e	(E0�mgy)/kT

e	E0/kT

(b) To find the most probable energy, we take the derivative of
Eq. 22-25, set the result equal to zero, and solve for the energy.
The result, which you should derive, is

.

Note that this is not equal to , which gives an energy of kT.
Can you explain why the energy corresponding to the most proba-
ble speed is not the most probable energy?

22-6 EQUATIONS OF STATE FOR
REAL GASES

The equation of state for an ideal gas holds well enough
for real gases at sufficiently low densities. However, it does
not hold exactly for real gases at any density and departs
more and more the greater the density. There is much in-
terest in finding an equation of state that describes real
gases over a range of densities. We discuss two of the
many approaches.

The Virial Expansion
Our first approach to an equation of state for a real gas is to
write

, (22-32)

in which B1, B2, . . . , called virial coefficients, are func-
tions of temperature and grow successively smaller as the
series progresses. It is clear that, at small molar densities 
(n/V : 0), this equation of state reduces to the ideal gas
law. This must be the case for all equations of state for
gases because the ideal gas law holds in the limit of low
densities. The virial coefficients must be found empirically,
by fitting Eq. 22-32 to experimental data.

The van der Waals Equation of State
This equation, proposed in 1873 by the Dutch physicist 
Johannes Diderik van der Waals (1837–1923), is

(V 	 nb) � nRT, (22-33)

in which a and b are constants whose values must be ob-
tained by experiment. Comparison of Eq. 22-33 with the
ideal gas law (pV � nRT ) suggests that van der Waals (who
received the 1910 Nobel Prize for his work) arrived at his
equation by correcting perceived points of failure in the
ideal gas law. That is indeed the case. Note that if the con-
stants a and b are put equal to zero (or if we allow the mo-
lar density n/V to become very small), Eq. 22-33 reduces to
the ideal gas law. We now investigate the line of reasoning
that led to the terms containing these constants.

�p �
an2

V 2 �

pV � nRT �1 � B1
n

V
� B2� n

V �
2

� ���	

1
2 mv2

p

Ep � 1
2 kT
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The Volume Correction. In Section 22-1 we assumed
(property 3) that the volume occupied by the molecules of
an ideal gas is negligible. This is not quite true for real
gases. Let us regard each molecule of a real gas as a hard
sphere of diameter d. Two such molecules cannot approach
each other so close that the distance between their centers
would be less than d (Fig. 22-10). The “free volume” per
mole available for one molecule is therefore decreased by
the volume of a hemisphere of radius d centered on the
other molecule. If we estimate d as 2.5 � 10	 10 m (a typi-
cal molecular diameter), then we can find an approximate
value of b of

The factor of comes about because, as two molecules ap-
proach each other, the volume within which they interact is
not a full sphere but the hemisphere facing the direction of
approach. Under standard conditions of temperature and
pressure the molar density n/V of an ideal gas is 45 mol/m3.
Thus bn/V � 0.0009 or about 0.1%; under these conditions,
the volume correction b is relatively small.

The Pressure Correction. In Section 22-1 (property 4) we
assumed that the molecules of an ideal gas exert forces on
each other only during collisions. That is also not quite true
for real gases. A molecule in the body of the gas would ex-
perience no net force due to the forces exerted on it by the
surrounding molecules; that is, these forces would balance
out to zero. However, that is not true for a molecule located
near the wall of the containing vessel, as in Fig. 22-11.
Such a molecule would experience a net force of attraction
away from the wall because of its interaction with the
nearby molecules that are within the range of the attractive
force that it exerts. Thus the pressure measured at the wall
is somewhat less than what we may call the true pressure
that exists in the body of the gas.

The reduction in pressure owing to the collisions of
molecule C with the wall is proportional to the number of
molecules in the hemisphere within the range R of its at-

1
2

b � 1
2NA(4

3�d 3) � 2 � 10	5 m3/mol.

tractive force and thus to the number of molecules per unit
volume or, alternatively, to n/V. The net effect due to all
the molecules that strike the wall (C is a typical member of
this group) is also proportional to the number of molecules
per unit volume or to n/V. The total reduction in pressure
is proportional to the product of these two quantities, or
(n/V )2.

That is, if we triple the number of molecules in a given
container, molecule C will experience three times the 
unbalanced force. In the entire gas there will be three
times as many molecules like C. The overall pressure re-
duction thus increases ninefold. If p in Eq. 22-33 is to be
the measured pressure, we must increase it by a term pro-
portional to (n/V )2 — that is, by an2/V 2 — to obtain the
“true” pressure.

Figure 22-12 compares a pV plot of an ideal gas at var-
ious temperatures with a plot of Eq. 22-33 for carbon
dioxide gas. Note that the deviation from ideal behavior
occurs primarily at high pressures and low temperatures.
For CO2 at 264 K, the graph contains a region of positive
slope, indicating that as we decrease the volume in this re-
gion the pressure also decreases. Since this behavior is
contrary to expectations for a gas, it suggests that some of
the CO2 is condensing to a liquid, leaving less of it in the
gaseous state. The van der Waals equation thus suggests
the existence of mixtures of different phases, which the
ideal gas model cannot do. If we were to compress a sam-
ple of CO2, we would find that the actual T � 264 K
graph would not follow the curve shown in Fig. 22-12b,
but instead would follow the dashed horizontal segment
AB in that figure.
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Figure 22-10. If molecules of a gas are considered to behave
like hard spheres, then the center of molecule B is not permitted to
move within the hemisphere of radius d centered on molecule A.
Here d is the diameter of a molecule. The free volume available
for molecule B is reduced by the volume of such a hemisphere
centered on each molecule of the gas.

Figure 22-11. A gas molecule C (here considered to be a
point) near the wall of the container experiences a net force away
from the wall due to the attraction of the surrounding molecules
within the range R of the force between molecules. The net pres-
sure on the walls of the container is reduced by all such molecules
within a distance R of the walls.
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Sample Problem 22-9. For oxygen the van der Waals
coefficients have been measured to be a � 0.138 J � m3/mol2 and
b � 3.18 � 10	 5 m3/mol. Assume that 1.00 mol of oxygen at 
T � 50 K is confined to a box of volume 0.0224 m3. What pres-
sure does the gas exert according to (a) the ideal gas law and (b)
the van der Waals equation?

Solution (a) The ideal gas law yields

(b) The pressure and the volume correction terms in the van der
Waals equation (Eq. 22-33) are

and

Substituting these quantities into the van der Waals equation and
solving that equation for p yields

p � 1.83 � 104 Pa � 0.181 atm.

For oxygen under these conditions the ideal gas law and the van
der Waals equation yield results that are within 2% of each other.
Note that the pressure correction term is only (275 Pa)/(1.83 �
104 Pa) or about 1.5%. The volume correction bn/V is only 
(3.18 � 10	 5 m3/mol)(1.00 mol)/(0.0224 m3) or about 0.14%. For
lower temperatures, as the gas moves in the direction of liquifac-
tion, the van der Waals equation will better agree with experiment
than will the ideal gas law.

b � 3.18 � 10	5 m3/mol.

an2

V 2 �
(0.138 J �m3/mol2)(1.00 mol)2

(0.0224 m3)2 � 275 Pa

� 1.85 � 104 Pa � 0.184 atm.

p �
nRT

V
�

(1.00 mol)(8.31 J/mol�K)(50 K)

0.0224 m3

22-7 THE INTERMOLECULAR
FORCES (Optional)

Forces between molecules are of electromagnetic origin.
All molecules contain electric charges in motion. These
molecules are electrically neutral in the sense that the nega-
tive charge of the electrons is equal and opposite to the pos-
itive charge of the nuclei. This does not mean, however,
that molecules do not interact electrically. For example,
when two molecules approach each other, the charges on
each are disturbed and depart slightly from their usual posi-
tions in such a way that the average distance between oppo-
site charges in the two molecules is a little smaller than that
between like charges. Hence an attractive intermolecular
force results. This internal rearrangement takes place only
when molecules are fairly close together, so that these
forces act only over short distances; they are short-range
forces. If the molecules come very close together, so that
their outer charges begin to overlap, the intermolecular
force becomes repulsive. The molecules repel each other
because there is no way for a molecule to rearrange itself
internally to prevent repulsion of the adjacent external elec-
trons. It is this repulsion on contact that accounts for the
billiard-ball character of molecular collisions in gases. If it
were not for this repulsion, molecules would move right
through each other instead of rebounding on collision.

Let us assume that molecules are approximately spheri-
cally symmetrical. Then we can describe intermolecular
forces graphically by plotting the mutual potential energy of
two molecules, U, as a function of distance r between their
centers. The force F acting on each molecule is related to
the potential energy U by F � 	 dU/dr. In Fig. 22-13a we
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Figure 22-12. pV graphs for one mole of (a) an ideal gas and (b) CO2 determined from the van der Waals equa-
tion. Note that at large volume, the ideal and van der Waals graphs behave similarly. As the temperature is raised, the
van der Waals graphs behave more like those of the ideal gas. Note also that, as the pressure becomes very large, the
volume approaches the value of b, as Eq. 22-33 requires, rather than the value of zero, as the ideal gas equation of state
would predict. The dashed line AB shows a more realistic representation of the behavior at T � 264 K. As the gas is
compressed from A, some of the gas condenses into a liquid, and the pressure remains constant.
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plot a typical U(r). Here we can imagine one molecule to be
fixed at O. Then the other molecule is repelled from O when
the slope of U is negative and is attracted to O when the
slope is positive. At r0 no force acts between the molecules;
the slope is zero there. In Fig. 22-13b we plot the mutual
force F(r) corresponding to this potential energy function.
The line E in Fig. 22-13a represents the mechanical energy
of the colliding molecules. The intersection of U(r) with this
line is a “turning point” of the motion (see Section 12-5).
The separation of the centers of two molecules at the turning
point is the distance of closest approach. The separation dis-
tance at which the mutual potential energy is zero may be
taken as the approximate distance of closest approach in a
low-energy collision and hence as the diameter of the mole-
cule. For simple molecules the diameter is about 2.5 �

10	 10 m. The distance r0 at which the potential is a mini-
mum (the equilibrium point) is about 3.5 � 10	 10 m for
simple molecules, and the force and potential energy ap-
proach zero as r increases to about 10	 9 m, or about 4 diam-
eters. The molecular force thus has a very short range. Of
course, different molecules have different sizes and internal
arrangement of charges so that intermolecular forces vary
from one molecule to another. However, they always show
the qualitative behavior indicated in Fig. 22-13.

In a solid, molecules vibrate about the equilibrium posi-
tion r0. Their total energy E is negative—that is, lying be-
low the horizontal axis in Fig. 22-13a. The molecules do not
have enough energy to escape from the potential valley (that
is, from the attractive binding force). The centers of vibra-
tion O are more or less fixed in a solid. In a liquid the mole-
cules have greater vibrational energy about centers that are
free to move but that remain about the same distance from
one another. Molecules have their greatest kinetic energy in
the gaseous state. In a gas the average distance between the
molecules is considerably greater than the effective range of
intermolecular forces, and the molecules move in straight
lines between collisions. Maxwell discusses the relation be-
tween the kinetic theory model of a gas and the intermolecu-
lar forces as follows: “Instead of saying that the particles are
hard, spherical, and elastic, we may if we please say that the
particles are centers of force, of which the action is insensi-
ble except at a certain small distance, when it suddenly ap-
pears as a repulsive force of very great intensity. It is evident
that either assumption will lead to the same results.”

It is interesting to compare the measured intermolecular
forces with the gravitational force of attraction between
molecules. If we choose a separation distance of 4 �
10	 10 m, for example, the force between two helium atoms
is about 6 � 10	 13 N. The gravitational force at that sepa-
ration is about 7 � 10	 42 N, smaller than the intermolecu-
lar force by a factor of 1029! This is a typical result and
shows that gravitation is negligible in intermolecular forces.

Although the intermolecular forces appear to be small
by ordinary standards, we must remember that the mass of
a molecule is so small (about 10	 26 kg) that these forces
can impart instantaneous accelerations of the order of
1015 m/s2 (1014 g). These accelerations may last for only a
very short time, of course, because one molecule can very
quickly move out of the range of influence of the other. �
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Figure 22-13. (a) The mutual potential energy U of two
molecules as a function of their separation distance r. The me-
chanical energy E is indicated by the horizontal line. (b) The ra-
dial force between the molecules, given by 	 dU/dr, correspond-
ing to this potential energy. The potential energy is a minimum at
the equilibrium separation r0, at which point the force is zero.
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MULTIPLE CHOICE

22-1 The Atomic Nature of Matter

1. Which two of the following cases do not correspond to the be-
havior of an ideal gas?

(A) A molecule loses kinetic energy when it collides elasti-
cally with another molecule.

(B) There is a potential energy associated with the interac-
tion between molecules.

(C) Collisions can change the internal energy of molecules.

(D) The speed of a molecule is unchanged after a collision
with the walls of the container.

2. The gas in a closed container consists of a mixture of helium
and krypton. This mixture can be treated as an ideal gas if it is
assumed that the helium and krypton atoms have the same av-
erage

(A) mass. (B) speed.
(C) momentum. (D) kinetic energy.



22-2 A Molecular View of Pressure
3. Where does the factor of “3” come from in Eq. 22-9?

(A) It is an approximation for �.
(B) It is found from comparing the units of pressure and

density.
(C) It is related to the number of spatial dimensions.
(D) It arises from integrating v2 to find the average.

22-3 The Mean Free Path
4. (a) At approximately what density, in molecules/m3, does the

mean free path of nitrogen molecules equal the size of a room
(� 3 m)?

(A) 1023 molecules/m3 (B) 1020 molecules/m3

(C) 1018 molecules/m3 (D) 109 molecules/m3

(b) Assuming that room temperature is 300 K, what is the ap-
proximate pressure?

(A) 10	1 atm (B) 10	2 atm
(C) 10	5 atm (D) 10	7 atm

5. The density of gas in a bell jar is kept constant while varying
the temperature. If the temperature is doubled, then the mean
free path will

(A) double. (B) remain the same.
(C) decrease by half.

6. In a fixed amount of gas, how would the mean free path be af-
fected if
(a) the density of the gas is doubled?
(b) the mean molecular speed is doubled?
(c) both the density and mean molecular speed are doubled?

(A) The mean free path will also double.
(B) The mean free path will remain the same.
(C) The mean free path will decrease by one-half.
(D) The mean free path will decrease to one-fourth its

original value.

22-4 The Distribution of Molecular Speeds
7. Rank vp , vav , and vrms from highest to lowest at T � 350 K for

hydrogen molecules.
(A) vrms 
 vp 
 vav (B) vrms 
 vav 
 vp

(C) vav 
 vrms 
 vp (D) vp 
 vav 
 vrms

8. The root-mean-square speed of molecules in still air at room
temperature is closest to

(A) walking speed (2 m/s).
(B) the speed of a fast car (30 m/s).
(C) the speed of a supersonic airplane (500 m/s).
(D) escape speed from Earth (1.1 � 104 m/s).
(E) the speed of light (3 � 108 m/s).

9. Which of the following speeds divides the molecules in a gas
in thermal equilibrium so that half have speeds faster, and half
have speeds slower?

(A) vp (B) vav (C) vrms

(D) None of the above.

10. Which of the following speeds corresponds to a molecule
with the average kinetic energy?

(A) vp (B) vav (C) vrms

(D) None of the above.

11. Consider the distribution of speeds shown in Fig. 22-14.
Which is the correct ordering for the speeds?

(A) vrms � vav � vp (B) vrms � vp � vav

(C) vav � vrms � vp (D) vav � vp � vrms

(E) vp � vav � vrms
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Figure 22-14. Multiple-choice question 11.
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22-5 The Distribution of Molecular Energies

22-6 Equations of State for Real Gases
12. A certain (fictitious!) gas is found to obey the van der Waals

equation exactly. The volume of the gas is changed from Vi �
1000nb to Vf � 2000nb. Assume that a is small compared to
pV 2/n2, but not negligible. If the change in volume occurred at
constant pressure, then

(A) Tf is slightly more than 2Ti.
(B) Tf is slightly less than 2Ti.
(C) Tf is exactly equal to 2Ti.
(D) The answer depends on the value of an2/pV 2.

13. A plasma is a gas consisting of charged particles. If all the
particles have the same charge, then the forces between the
particles will be repulsive at all distances. What would be the
sign of a in the van der Waals equation for this type of gas?

(A) Positive (B) Negative
(C) The sign would depend on the sign of the charges in

the plasma.
(D) There would be no sign, since the van der Waals equa-

tion applies only for attractive forces.

22-7 Intermolecular Forces

QUESTIONS

1. In kinetic theory we assume that the number of molecules in a
gas is large. Real gases behave like an ideal gas at low densi-
ties. Are these statements contradictory? If not, what conclu-
sion can you draw from them?

2. We have assumed that the walls of the container are elastic
for molecular collisions. Actually, the walls may be inelastic.
Why does this make no difference as long as the walls are at
the same temperature as the gas?

3. We have assumed that the force exerted by molecules on 
the wall of a container is steady in time. How is this justi-
fied?

4. We know that a stone will fall to the ground if we release it.
We put no constraint on molecules of the air, yet they do not
all fall to the ground. Why not?

5. How is the speed of sound related to the gas variables in the
kinetic theory model?



6. Why doesn’t the Earth’s atmosphere leak away? At the top of
the atmosphere atoms will occasionally be headed out with a
speed exceeding the escape speed. Isn’t it just a matter of
time?

7. Titan, one of Saturn’s many moons, has an atmosphere, but
our own Moon does not. What is the explanation?

8. How, if at all, would you expect the composition of the air to
change with altitude?

9. Would a gas whose molecules were true geometric points
obey the ideal gas law?

10. Why do molecules not travel in perfectly straight lines be-
tween collisions and what effect, easily observable in the lab-
oratory, occurs as a result?

11. Suppose we want to obtain 238U instead of 235U as the end
product of a diffusion process. Would we use the same
process? If not, explain how the separation process would
have to be modified.

12. Considering the diffusion of gases into each other, can you
draw an analogy to a large jostling crowd with many “colli-
sions” on a large inclined plane with a slope of a few degrees?

13. Would you expect real molecules to be spherically symmetri-
cal? If not, how would the potential energy function of Fig.
22-13 change?

14. Although real gases can be liquefied, an ideal gas cannot be.
Explain.

15. Show that as the volume per mole of a gas increases, the van
der Waals equation tends to the equation of state of an ideal
gas.

16. Consider the case in which the mean free path is greater than
the longest straight line in a vessel. Is this a perfect vacuum
for a molecule in this vessel?

17. List effective ways of increasing the number of molecular col-
lisions per unit time in a gas.

18. Give a qualitative explanation of the connection between the
mean free path of ammonia molecules in air and the time it
takes to smell the ammonia when a bottle is opened across the
room.

19. If molecules are not spherical, what meaning can we give to d
in Eq. 22-13 for the mean free path? In which gases would
the molecules act most nearly like rigid spheres?

20. In what sense is the mean free path a macroscopic property of
a gas rather than a microscopic one?

21. Since the actual force between molecules depends on the dis-
tance between them, forces can cause deflections even when
molecules are far from “contact” with one another. Further-
more, the deflection caused should depend on how long a
time these forces act and hence on the relative speed of the
molecules. (a) Would you then expect the measured mean
free path to depend on temperature, even though the density
remains constant? (b) If so, would you expect � to increase or

decrease with temperature? (c) How does this dependence en-
ter into Eq. 22-13?

22. When a can of mixed nuts is shaken, why does the largest nut
generally end up on the surface, even if it is denser than the
others?

23. Justify qualitatively the statement that, in a mixture of mole-
cules of different kinds in complete equilibrium, each kind of
molecule has the same Maxwellian distribution in speed that
it would have if the other kinds were not present.

24. A gas consists of N particles. Explain why vrms � vav regard-
less of the distribution of speeds.

25. What observation is good evidence that not all molecules of a
body are moving with the same speed at a given temperature?

26. The fraction of molecules within a given range �v of the rms
speed decreases as the temperature of a gas rises. Explain.

27. Figure 22-15 shows the distribution of the x component of the
velocities of the molecules in a container at a fixed tempera-
ture. (a) The distribution is symmetrical about vx � 0; make
this plausible. (b) What does the total area under the curve
represent? (c) How would the distribution change with an in-
crease in temperature? (d) What is the most probable value of
vx? (e) Is the most probable speed equal to zero? Explain.
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Figure 22-15. Question 27.

28. The slit system in Fig. 22-8 selects only those molecules
moving in the � x direction. Does this destroy the validity of
the experiment as a measure of the distribution of speeds of
molecules moving in all directions?

29. List examples of the Brownian motion in physical phenom-
ena.

30. A golf ball is suspended from the ceiling by a long thread.
Explain in detail why its Brownian motion is not readily ap-
parent.

31. Let 
n be the number of molecules per unit volume in a gas. If
we define 
n for a very small volume in a gas—say, one equal
to 10 times the volume of an atom—then 
n fluctuates with
time through the range of values zero to some maximum
value. How then can we justify a statement that 
n has a defi-
nite value at every point in a gas?

N(vx)

vx

0

EXERCISES

22-1 The Atomic Nature of Matter
1. Gold has a molar (atomic) mass of 197 g/mol. Consider a 2.56-

g sample of pure gold vapor. (a) Calculate the number of moles
of gold present. (b) How many atoms of gold are present?

2. (a) Find the number of molecules in 1.00 m3 of air at 20.0°C
and at a pressure of 1.00 atm. (b) What is the mass of this vol-
ume of air? Assume that 75% of the molecules are nitrogen
(N2) and 25% are oxygen (O2).



3. A steel tank contains 315 g of ammonia gas (NH3) at an ab-
solute pressure of 1.35 � 106 Pa and temperature 77.0°C. (a)
What is the volume of the tank? (b) The tank is checked later
when the temperature has dropped to 22.0°C and the absolute
pressure has fallen to 8.68 � 105 Pa. How many grams of gas
leaked out of the tank?

4. (a) Consider 1.00 mol of an ideal gas at 285 K and 1.00 atm
pressure. Imagine that the molecules are for the most part
evenly spaced at the centers of identical cubes. Using Avo-
gadro’s constant and taking the diameter of a molecule to be
3.00 � 10	 8 cm, find the length of an edge of such a cube
and calculate the ratio of this length to the diameter of a 
molecule. The edge length is an estimate of the distance be-
tween molecules in the gas. (b) Now consider a mole of water
having a volume of 18 cm3. Again imagine the molecules to
be evenly spaced at the centers of identical cubes and repeat
the calculation in (a).

5. Consider a sample of argon gas at 35.0°C and 1.22 atm pres-
sure. Suppose that the radius of a (spherical) argon atom is
0.710 � 10	 10 m. Calculate the fraction of the container vol-
ume actually occupied by atoms.

22-2 A Molecular View of Pressure
6. The mass of the H2 molecule is 3.3 � 10	 24 g. If 1.6 � 1023

hydrogen molecules per second strike 2.0 cm2 of wall at an
angle of 55° with the normal when moving with a speed of
1.0 � 105 cm/s, what pressure do they exert on the wall?

7. At 44.0°C and 1.23 � 10	 2 atm the density of a gas is
1.32 � 10	 5 g/cm3. (a) Find vrms for the gas molecules. (b)
Using the ideal gas law, find the number of moles per unit vol-
ume (molar density) of the gas. (c) By combining the results of
(a) and (b), find the molar mass of the gas and identify it.

8. A cylindrical container of length 56.0 cm and diameter
12.5 cm holds 0.350 moles of nitrogen gas at a pressure of
2.05 atm. Find the rms speed of the nitrogen molecules.

22-3 Mean Free Path
9. At standard temperature and pressure (0°C and 1.00 atm) the

mean free path in helium gas is 285 nm. Determine (a) the
number of molecules per cubic meter and (b) the effective di-
ameter of the helium atoms.

10. At 2500 km above the Earth’s surface the density is about
1.0 molecule/cm3. (a) What mean free path is predicted by
Eq. 22-13 and (b) what is its significance under these condi-
tions? Assume a molecular diameter of 2.0 � 10	 8 cm.

11. At what frequency would the wavelength of sound be on the
order of the mean free path in nitrogen at 1.02 atm pressure
and 18.0°C? Take the diameter of the nitrogen molecule to be
315 pm.

12. In a certain particle accelerator the protons travel around a
circular path of diameter 23.5 m in a chamber of 1.10 � 10	 6

mm Hg pressure and 295 K temperature. (a) Calculate the
number of gas molecules per cubic meter at this pressure. (b)
What is the mean free path of the gas molecules under these
conditions if the molecular diameter is 2.20 � 10	 8 cm?

13. In Sample Problem 22-4, at what temperature is the average
rate of collision equal to 6.0 � 109 s	 1? The pressure remains
unchanged.

22-4 The Distribution of Molecular Speeds
14. The speeds of a group of ten molecules are 2.0, 3.0, 4.0, . . . ,

11 km/s. (a) Find the average speed of the group. (b) Calcu-
late the root-mean-square speed of the group.

15. (a) Ten particles are moving with the following speeds: four
at 200 m/s, two at 500 m/s, and four at 600 m/s. Calculate the
average and root-mean-square speeds. Is vrms 
 vav? (b) Make
up your own speed distribution for the ten particles and show
that vrms � vav for your distribution. (c) Under what condition
(if any) does vrms � vav?

16. Calculate the root-mean-square speed of ammonia (NH3)
molecules at 56.0°C. An atom of nitrogen has a mass of
2.33 � 10	 26 kg and an atom of hydrogen has a mass of
1.67 � 10	 27 kg.

17. The temperature in interstellar space is 2.7 K. Find the root-
mean-square speed of hydrogen molecules at this tempera-
ture. (See Table 22-1.)

18. Verify Eq. 22-16 by evaluating dN(v)/dv � 0 and solving 
for v.

19. Evaluate the integral in Eq. 22-17 to verify Eq. 22-18.

20. Evaluate the integral in Eq. 22-19 to verify that (v2)av �
3kT/m.

21. Calculate the root-mean-square speed of smoke particles of
mass 5.2 � 10	 14 g in air at 14°C and 1.07 atm pressure.

22. At what temperature do the atoms of helium gas have the
same rms speed as the molecules of hydrogen gas at 26.0°C?

23. (a) Compute the temperatures at which the rms speed is equal
to the speed of escape from the surface of the Earth for mole-
cular hydrogen and for molecular oxygen. (b) Do the same
for the Moon, assuming the gravitational acceleration on its
surface to be 0.16g. (c) The temperature high in the Earth’s
upper atmosphere is about 1000 K. Would you expect to find
much hydrogen there? Much oxygen?

24. You are given the following group of particles (Nn represents
the number of particles that have a speed vn):

(a) Compute the average speed vav. (b) Compute the root-
mean-square speed vrms. (c) Among the five speeds shown,
which is the most probable speed vp for the entire group?

25. In the apparatus of Miller and Kusch (see Fig. 22-8) the
length L of the rotating cylinder is 20.4 cm and the angle � is
0.0841 rad. What rotational speed corresponds to a selected
speed v of 212 m/s?

26. It is found that the most probable speed of molecules in a gas
at temperature T2 is the same as the rms speed of the mole-
cules in this gas when its temperature is T1. Calculate T2 /T1.

27. Show that, for atoms of mass m emerging as a beam from a
small opening in an oven of temperature T, the most probable
speed is 

28. An atom of germanium (diameter � 246 pm) escapes from a
furnace (T � 4220 K) with the root-mean-square speed into
a chamber containing atoms of cold argon (diameter �
300 pm) at a density of 4.13 � 1019 atoms/cm3. (a) What is
the speed of the germanium atom? (b) If the germanium atom
and an argon atom collide, what is the closest distance be-

vp � √3kT/m.
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Nn vn (km/s)

2 1.0
4 2.0
6 3.0
8 4.0
2 5.0



tween their centers, considering each as spherical? (c) Find
the initial collision frequency experienced by the germanium
atom.

22-5 The Distribution of Molecular Energies
29. Calculate the fraction of particles in a gas moving with trans-

lational kinetic energy between 0.01kT and 0.03kT. (Hint: For
E �� kT, the term e	 E/kT in Eq. 22-25 can be replaced with
1 	 E/kT. Why?)

30. Find the fraction of particles in a gas having translational ki-
netic energies within a range 0.02kT centered on the most
probable energy Ep. (Hint: In this region, N(E) � constant.
Why?)

22-6 Equations of State for Real Gases
31. Estimate the van der Waals constant b for H2O knowing that

one kilogram of water has a volume of 0.001 m3. The molar
mass of water is 18 g/mol.

32. The value of the van der Waals constant b for oxygen is
32 cm3/mol. Compute the diameter of an O2 molecule.

33. Show that the constant a in the van der Waals equation can be
written in units of

.

22-7 Intermolecular Forces

energy per particle

particle density
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Figure 22-16. Problem 9.

Figure 22-17. Problem 10.

PROBLEMS

1. At 0°C and 1.000 atm pressure the densities of air, oxygen,
and nitrogen are, respectively, 1.293 kg/m3, 1.429 kg/m3, and
1.250 kg/m3. Calculate the fraction by mass of nitrogen in the
air from these data, assuming only these two gases to be pres-
ent.

2. Dalton’s law states that when mixtures of gases having no
chemical interaction are present together in a vessel, the pres-
sure exerted by each constituent at a given temperature is the
same as it would exert if it alone filled the whole vessel, and
that the total pressure is equal to the sum of the partial pres-
sures of each gas. Derive this law from kinetic theory, using
Eq. 22-8.

3. A container encloses two ideal gases. Two moles of the first
gas are present, with molar mass M1. Molecules of the second
gas have a molar mass M2 � 3M1, and 0.5 mol of this gas is
present. What fraction of the total pressure on the container
wall is attributable to the second gas? (Hint: See Problem 2.)

4. Calculate the mean free path for 35 spherical jelly beans in a
jar that is vigorously shaken. The volume of the jar is 1.0 L
and the diameter of a jelly bean is 1.0 cm.

5. The mean free path A of the molecules of a gas may be deter-
mined from measurements (for example, from measurement
of the viscosity of the gas). At 20.0°C and 75.0 cm Hg pres-
sure such measurements yield values of �(argon) � 9.90 �
10	 6 cm and �(nitrogen) � 27.5 � 10	 6 cm. (a) Find the ra-
tio of the effective cross-section diameters of argon to nitro-
gen. (b) What would be the value of the mean free path of ar-
gon at 20.0°C and 15.0 cm Hg? (c) What would be the value
of the mean free path of argon at 	 40.0°C and 75.0 cm Hg?

6. The probability that a gas molecule will travel a distance be-
tween r and r � dr before colliding with another molecule is
given by Ae	crdr, where A and c are constants. By setting the
average distance of travel to be equal to the mean free path,
find A and c in terms of the number of molecules N and the
mean free path �.

7. Two containers are at the same temperature. The first contains
gas at pressure p1 whose molecules have mass m1 with a root-
mean-square speed vrms,1. The second contains molecules of
mass m2 at pressure 2p1 that have an average speed vav,2 �
2vrms,1. Find the ratio m1:m2 of the masses of their molecules.

8. A gas, not necessarily in thermal equilibrium, consists of N
particles. The speed distribution is not necessarily Maxwel-

lian. (a) Show that vrms � vav regardless of the distribution of
speeds. (b) When would the equality hold?

9. Figure 22-16 shows a hypothetical speed distribution of N gas
molecules with N(v) � Cv2 for 0 � v � v0 and N(v) � 0 for
v 
 v0. Find (a) an expression for C in terms of N and v0, (b)
the average speed of the particles, and (c) the rms speed of the
particles.

N
(v

)

0
0 v0

v

10. A gas of N particles has the hypothetical speed distribution
shown in Fig. 22-17 [N(v) � 0 for v 
 2v0]. (a) Express a in
terms of N and v0. (b) How many of the particles have speeds
between 1.50v0 and 2.00v0? (c) Express the average speed of
the particles in terms of v0. (d) Find vrms.

0

a

0 v0

v

2v0

N
(v
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11. For a gas in which all molecules travel with the same speed
vav, show that vrel � vav rather than vav (which is the result
obtained when we consider the actual distribution of molecu-
lar speeds). See Eq. 22-13.

√24
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12. The Sun is a huge ball of hot ideal gas. The glow surrounding
the Sun in the ultraviolet image shown in Fig. 22-18 is the
corona—the atmosphere of the Sun. Its temperature and pres-
sure are 2.0 � 106 K and 0.030 Pa. Calculate the rms speed of
free electrons in the corona.

and that the different atoms combine at constant volume to
form molecules of mass ma � mb. Once the temperature re-
turns to its original value, what would be the ratio of the pres-
sure after combination to the pressure before?

14. Find all of the virial coefficients for a gas that obeys the van
der Waals equation of state.

15. The envelope and basket of a hot-air balloon have a combined
mass of 249 kg, and the envelope has a capacity of 2180 m3.
When fully inflated, what should be the temperature of the
enclosed air to give the balloon a lifting capacity of 272 kg
(in addition to its own mass)? Assume that the surrounding
air, at 18.0°C, has a density of 1.22 kg/m3.

16. Very small solid particles, called grains, exist in interstellar
space. They are continually bombarded by hydrogen atoms of
the surrounding interstellar gas. As a result of these collisions,
the grains execute Brownian movement in both translation
and rotation. Assume that the grains are uniform spheres of
diameter 4.0 � 10	 6 cm and density 1.0 g/cm3, and that the
temperature of the gas is 100 K. Find (a) The root-mean-
square speed of the grains between collisions and (b) the ap-
proximate rate (rev/s) at which the grains are spinning. (As-
sume that the average translational kinetic energy and average
rotational kinetic energy are equal.)

17. As Fig. 22-11 suggests, if the intermolecular forces are large
enough, the measured pressure p of a gas that obeys the van
der Waals equation of state could be zero. (a) For what value
of the volume per mole would this occur? (Hint: There are
two solutions; find them both and interpret them.) (b) Show
that there is a maximum temperature for zero pressure to oc-
cur, and find this maximum temperature in terms of the a and
b parameters in the van der Waals equation. (c) Assuming that
oxygen obeys the van der Waals equation with a � 0.138
J � m3/mol2 and b � 3.18 � 10	5 m3/mol, find the maximum
temperature for which p � 0 for oxygen and compare this
value with the normal boiling point of oxygen.
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Figure 22-18. Problem 12.

13. Consider a gas at temperature T occupying a volume V to
consist of a mixture of atoms—namely, Na atoms of mass ma

each having an rms speed va and Nb atoms of mass mb each
having an rms speed vb. (a) Give an expression for the total
pressure exerted by the gas. (b) Suppose now that Na � Nb

COMPUTER PROBLEMS

1. Write a program to simulate the random walk of a particle.
The particle starts at the origin, and can then take a step with
�x and �y increments assigned randomly between 	 1 and 1.
(a) Allow the particle to “walk” through 200 steps, and graph
the motion as was done in Fig. 22-1. Choose the scale of the
graph to just fit the data. (b) Allow the particle to walk
through 2000 steps, but this time plot the position of the parti-
cle only at the end of each 10 steps. Again, choose the scale
of the graph to just fit the data. (c) Repeat, but now allow the
particle to walk through 20,000 steps, and only plot the posi-
tion at the end of each 100 steps. Compare the three graphs.

How does the size of the graph grow with the number of
steps? Do the graphs look similar? If the graphs were shuf-
fled, would you be able to tell which was which?

2. Consider a van der Waals gas with a � 0.10 J � m3/mol2 and
b � 1.0 � 10	 4 m3/mol. (a) Find the temperature Tcr , pres-
sure pcr , and volume Vcr where and 
(b) Graph the pressure along isotherms as a function of vol-
ume for 0.80Tcr , 0.85Tcr , 0.90Tcr , 0.95Tcr , 1.00Tcr , 1.05Tcr ,
and 1.10Tcr . The graphs should extend from V � 0 to V �
5Vcr . (c) What is physically significant about the Tcr isotherm?

�2p/�V 2 � 0.�p/�V � 0
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