TEMPERATURE

ith this chapter we begin our study of thermal

physics, the branch of physics that deals with the changes in the properties of systems that occur when work

is done on (or by) them and heat energy is added to (or taken from) them. For systems such as confined

gases the properties involved are their pressure, volume, temperature, energy, and—as we will come to

learn— entropy, a property that we will introduce in Chapter 24.

This chapter deals with temperature, a concept that deeply underlies all of the laws of thermodynamics.

We have used this concept in earlier chapters, now we must define it precisely, as we have done for all

other physical concepts that we have encountered. We also introduce the concept of an ideal gas, which will

serve as a convenient system to use in analyzing and illustrating the laws of thermodynamics.

21-1 TEMPERATURE AND
THERMAL EQUILIBRIUM

We all have an ingrained sense of temperature and, indeed,
we have used this concept freely in earlier chapters. In this
chapter we wish to define temperature in a rigorous way.
Just as we went beyond our sense of “push” and “pull” in
defining force, we need to go beyond our sense of “hot”
and “cold” in defining temperature. Before we can deal di-
rectly with temperature, however, we must first establish
the concept of thermal equilibrium, which is concerned
with the question of whether or not the temperatures of two
systems are equal.

Figure 21-la shows two systems A and B, which,
among many possibilities, might be blocks of metal or con-
fined gases. They are isolated from one another and from
their environment, by which we mean that neither energy
nor matter can enter or leave either system. For example,
the systems may be surrounded by walls made of thick
slabs of Styrofoam, presumed to be both rigid and imper-
meable. Such walls are said to be adiabatic, which you can
think of as meaning thermally insulating. Changes in the
measured properties of either system have no effect on the
properties of the other system.
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As Fig. 21-1b shows, we can replace the adiabatic wall
that separates the two systems with one that permits the
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FIGURE 21-1. (a) Systems A and B are separated by an adia-
batic wall. The systems have different temperatures 7, and Ty. (b)
Systems A and B are separated by a diathermic wall, which per-
mits energy to be exchanged between the systems. The systems
will eventually come to thermal equilibrium, upon which they
have the same temperature 7.
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flow of energy in a form that we have referred to in Chapter
13 as heat. A thin but rigid sheet of copper might be an ex-
ample. Such a wall is called diathermic, which you can
think of as thermally conducting.

When the two systems are placed in contact through a
diathermic wall, the passage of heat energy through the
wall —if it occurs—causes the properties of the two sys-
tems to change. If the systems are confined gases, for ex-
ample, their pressures might change. The changes are rela-
tively rapid at first but become slower as time goes on, until
finally all measured properties of each system approach
constant values. When this occurs, we say that the two sys-
tems are in thermal equilibrium with each other. Thus a test
of whether or not two systems are in thermal equilibrium is
to place them in thermal contact; if their properties do not
change, they are in thermal equilibrium; if their properties
do change they are not.

It might be inconvenient, or even impossible, to put two
systems in thermal contact with each other through a
diathermic wall. (The systems might be too bulky to move
easily, or they might be very far apart.) We therefore gener-
alize the concept of thermal equilibrium so that systems
need not be brought into thermal contact with each other.

One way to test such separated systems is to use a third
system C. By placing C in contact with A and then with B,
we could discover whether A and B are in thermal equilib-
rium without ever bringing A and B into direct contact. This
is summarized as a postulate called the zeroth law of ther-
modynamics, which is often stated as follows:

If systems A and B are each in thermal equilibrium with
a third system C, then A and B are in thermal equilib-
rium with each other.

This law may seem simple but it is not at all obvious. There
are other situations in which a system C may have equiva-
lent interactions with two systems A and B, but A and B do
not have a similar interaction with each other. For example,
if A and B are unmagnetized iron nails and C is a magnet,
then A and C attract each other as do B and C. However, A
and B do not.

The zeroth law came to light in the 1930s, long after the
first and second laws of thermodynamics had been pro-
posed, accepted, and named. As we discuss later, the zeroth
law underlies the concept of temperature, which is funda-
mental to the first and second laws. The law that establishes
the concept of temperature should have a lower number,
hence zero.

Temperature

When two systems are in thermal equilibrium, we say that
they have the same temperature. For example, suppose the
systems are two gases that initially have different tempera-
tures, pressures, and volumes. After we place them in con-
tact and wait a sufficiently long time for them to reach ther-
mal equilibrium, their pressures will in general not be

equal, nor will their volumes; their temperatures, however,
will always be equal in thermal equilibrium. It is only
through this argument based on thermal equilibrium that
the notion of temperature can be introduced into physics.

Although temperature in its everyday use is familiar to
all of us, it is necessary to give it a precise meaning if it is
to be of value as a scientific measure. Our subjective notion
of temperature is not at all reliable. A familiar experience is
to touch a metal railing outdoors on a very cold day and
then touch a nearby wooden object. The railing well feel
colder although in fact both are at the same temperature.
What you are testing when you touch a cold object is not
only its temperature but also its ability to transfer energy
(as heat) away from your (presumably warmer) hand. In
such cases your hand is giving a subjective and incorrect
measure of temperature. You can also test your subjectivity
convincingly by soaking your left hand in cold water and
your right hand in warm water. If you then quickly put both
hands in water of intermediate temperature, your left hand
will sense that the water is warmer than it actually is and
your right hand will sense that it is colder.

In practical use of the zeroth law, we identify system C,
to which the statement of the law refers, as a thermometer.
If the thermometer comes separately into thermal equilib-
rium with systems A and B (which might be widely sepa-
rated buckets of water) and indicates the same reading, then
we may conclude that A and B are in thermal equilibrium
and thus indeed have the same temperature. Note that, to
test whether two systems have the same temperature, we do
not have to establish a temperature scale. If our thermome-
ter (system C) is of the mercury-in-glass type, for example,
we do not need to have it marked off in degrees. Simply put
the thermometer in contact with system A, mark the mer-
cury level, and then put it in contact with system B, noting
whether the mercury reaches the same level.

A statement of the zeroth law in terms of temperature is
the following:

There exists a scalar quantity called temperature, which
is a property of all thermodynamic systems in equilib-
rium. Two systems are in thermal equilibrium if and
only if their temperatures are equal.

The zeroth law thus defines the concept of temperature
and permits us to build and use thermometers.

21-2 TEMPERATURE SCALES

As Table 1-1 shows, temperature (symbol T') is one of the
seven base units of the International System of Units (SI).
As such we must define it carefully and devise procedures
for measuring it that can be reproduced in laboratories
around the world. Later in this section we will discuss ther-
mometers based on the familiar Fahrenheit and Celsius
scales. These, however, are scales of practical convenience
and temperatures measured on them have no deep physical
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meaning. The scale that is universally adopted as funda-
mental in physics is the Kelvin scale. It is based on the
recognition that although there is no apparent limit to how
high the temperature of a system can be, there is a limit to
how low it can be. This absolute zero of temperature is de-
fined as zero on the Kelvin scale, which measures tempera-
tures in degrees above this absolute lower limit. Where
temperature appears in any equation of fundamental impor-
tance in physics, it is certain to refer to this Kelvin (or ab-
solute) scale.

To establish the size of the degree on the Kelvin scale
we need to identify a specific calibrating system to which,
by international agreement, we assign a specific tempera-
ture. We choose for this purpose an arrangement in which
ice, liquid water, and water vapor coexist in thermal equi-
librium. This point, which is very close to the freezing
point of water at atmospheric pressure, is called the triple
point of water. (The triple point was chosen, rather than the
freezing point, because it is more consistently repro-
ducible.) Figure 21-2 shows a triple-point cell of the type
used at the National Institute of Standards and Technology
(NIST). A thermometer to be calibrated is inserted into the
well of the triple-point cell.

The Kelvin temperature at the triple point has been set
by international agreement in 1954 to be

T, = 273.16 K (exactly), (21-1)

where K (= kelvin) is the base unit of temperature on the
Kelvin scale. The kelvin, which is the name we give to the
degree on the Kelvin scale, is thus defined as 1/273.16 of
the temperature of the triple point of water. In place of Eq.
21-1, the international community could equally well have
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FIGURE 21-2. The National Institute of Standards and Tech-
nology triple-point cell. The U-shaped inner cell contains pure
water and is sealed after all the air has been removed. It is im-
mersed in a water—ice bath. The system is at the triple point when
ice, water, and water vapor are all present, and in equilibrium, in-
side the cell. The thermometer to be calibrated is inserted into the
central well.

chosen 7;, = 100 K, or any other number, but they did not.
The choice they actually made was designed so that the size
of the degree on the Kelvin scale (1 kelvin) would equal the
size of the degree on the already well-established Celsius
scale.

Note that we do not use the degree symbol in reporting a
temperature on the Kelvin scale. We might say, for example,
that the melting point of lead is 600.7 K, or 600.7 kelvin.

It remains to describe how the Kelvin temperature of a
system is actually measured; we shall do so in Section 21-3.

The Celsius and the Fahrenheit
Temperature Scales

In nearly all the countries of the world the Celsius scale
(formerly called the centigrade scale) is used for all popular
and commercial—and some scientific—measurements.
Historically, this scale was based on two calibration points:
the normal freezing point of water, defined to be 0°C, and
the normal boiling point of water, defined to be 100°C.
These two points were used to calibrate thermometers and
other temperatures were then deduced by interpolation or
extrapolation. Note that the degree symbol (°) is used to ex-
press temperatures on the Celsius scale.

Today we no longer use these two fixed points to define
the Celsius scale; instead, we define a temperature (7) on
the Celsius scale in terms of the corresponding Kelvin tem-
perature 7, by

Tc =T — 273.15. (21-2)

The freezing and boiling points of water (at a pressure of
1 atm) are now measured on the Kelvin scale and then con-
verted to Celsius using Eq. 21-2. The experimental values
are, respectively, 0.00°C and 99.975°C, in agreement (for
all practical purposes) with the historical basis for defining
the Celsius scale. Note also that Eq. 21-2 indicates that the
Celsius temperature of the triple point of water is 0.01°C.
As we pointed out earlier, this is close to the temperature of
the freezing point of water. Also note that, according to Eq.
21-2, the absolute zero of temperature is —273.15°C.

The Fahrenheit scale was also based historically on two
fixed points that, after several earlier choices, came to be:
(1) the normal freezing point of water, which was defined
to be 32°F, and (2) the normal boiling point of water, which
was defined to be 212°F. The relationship between the
Fahrenheit and the Celsius scales is now taken to be

Ty = 2Tc + 32. (21-3)

As for the Celsius scale, the degree symbol is used in re-
porting temperatures on the Fahrenheit scale, for example,
98.6°F (normal oral human body temperature).

Transferring between the Celsius and the Fahrenheit
scales is easily done by remembering a few corresponding
points, such as those shown in Fig. 21-3, which compares
the Kelvin, Celsius, and Fahrenheit scales. It is also neces-
sary to make use of the equality between an interval of 9
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K C F
Normal boiling point of water |—:|373.125 Kl:: 100°C |E‘212°F
Normal body temperature '_:|310.15 K | ~37.0°C l—; 98.6°F
Accepted comfort level i :|293 K j2O°C | 68°F
Freezing point of water 1273.15K —0.00°C = 2 0r1F
: l40c  3a0F
Boiling point of liquid nitrogen | 277 K _1_196°C § —321°F
Absolute zero ok :—273.1 5°C__—459.67°F

FicURE 21-3. The Kelvin, Celsius, and Fahrenheit temperature
scales compared. Note that the latter two scales coincide at — 40°.

degrees on the Fahrenheit scale and an inferval of 5 degrees
on the Celsius scale, which we express as

9F° =5C°. (21-4)

Note that these intervals are expressed as F° and C°, not as
°F or °C. Thus we might write or say: “The temperature here
is 90°F. It would be more pleasant if it were 15 F° cooler.”

21-3 MEASURING
TEMPERATURES

Here we address the problem of measuring the tempera-
tures of a system on the Kelvin scale. Once we have made
this measurement, we can easily find the temperature of the
system on the Celsius and the Fahrenheit scales, using Eqgs.
21-2 and 21-3. To measure a temperature we need a ther-
mometer. What form shall it take?

In principle, any property of a substance that varies with
temperature can form the basis for a thermometer. Exam-
ples might be the volume of a liquid (as in the common
mercury-in-glass thermometer), the pressure of a gas kept
at constant volume, the electrical resistance of a wire, the
length of a strip of metal, or the color of a lamp filament,
all of which vary with temperature and all of which are in
common use as thermometers. The choice of one of these
properties leads to a device-sensitive or “private” tempera-
ture scale that is defined only for that property and that
does not necessarily agree with other choices we might
make. Of course all thermometers will agree, by definition
of Eq. 21-1, at the triple point of water. The question is,
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will they agree at other temperatures, either higher or
lower? The answer is that they will not, as Sample Problem
21-1 shows. Even so, a “private” thermometer, when prop-
erly calibrated against accepted standards, can be useful as
a secondary standard for measuring temperature. Indeed,
nearly all temperature measurements are made using such
secondary standard thermometers.

Let us assume that our thermometer is based on a sys-
tem in which we measure the value of an as yet unspecified
thermometric property X. The temperature is some function
of X. We choose the simplest possible relationship—
namely, a linear one

T* = aX (21-5)

in which a is a constant. We designate the temperature
given by Eq. 21-5 by T* rather than T because the tempera-
ture so measured will be a device-sensitive temperature, not
a true Kelvin temperature. We can find the value of a by
measuring X at the triple point of water, obtaining the value
X We then have, for the temperature as a function of X,

T*(X) = (273.16 K) ;( . (21-6)

tr
It remains only to select a suitable temperature-dependent
property X and to see whether we can establish a procedure
that will yield the true Kelvin temperature rather than 7*.

SAMPLE PROBLEM 21-1. The resistance of a certain coil
of platinum wire increases by a factor of 1.392 between the triple
point of water and the boiling point of water at atmospheric pres-
sure (that is, the normal boiling point). What temperature for the
normal boiling point of water is measured by this thermometer?

Solution The generalized thermometric property X that appears in
the defining relation of Eq. 21-6 is, in this case, the resistance R.
We are not given R but we are told that R = 1.392 R,,. Thus,
with R substituted for X, Eq. 21-6 becomes

R
T*(R) =T, R

tr

= (273.16 K)(1.329) = 380.2 K.

This value gives the “platinum resistance temperature” of boiling
water. Other thermometers will give different values. For example,
the normal boiling point of water as measured by a thermometer
(a thermocouple) based on the electric voltage generated by two
joined dissimilar wires (copper and constantan) is 412.5 K. The
actual Kelvin temperature of the normal boiling point of water
(see Fig. 21-3) is 373.125 K. Although such “private scale” ther-
mometers, when properly calibrated, are indispensable for practi-
cal use, we cannot rely on them to give consistent measures of
temperature on the Kelvin scale.

The Constant-Volume Gas Thermometer

The thermometric property that proves most suitable for
measuring temperatures on the Kelvin scale is the pressure
p exerted by a fixed volume of gas. The device for realizing
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FIGURE 21-4. A constant-volume gas thermometer. The bulb
can be immersed in a triple-point cell and then in the bath of a lig-
uid whose temperature we are trying to measure. The difference
between the pressure of the gas in the bulb and the atmospheric
pressure is found from the height 4 of the mercury column in the
manometer. The simplicity of this sketch greatly conceals the
complexity of an actual gas thermometer such as may be found,
for example, in national standardizing laboratories in many coun-
tries.

this procedure in practice is called a constant-volume gas
thermometer. Figure 21-4 shows a sketch of its essential
features. A gas-filled bulb can be alternately immersed in a
bath of the liquid whose temperature is to be measured or
in a triple-point bath. The volume of the gas in the bulb,
which we take to be nitrogen, is maintained constant by
raising or lowering the mercury-filled reservoir, so that the
level of mercury in the left arm of the manometer always
coincides with a fixed marker.

The procedure for measuring a temperature is as fol-
lows:

Step 1: (a) Immerse the nitrogen-filled bulb in a triple-
point bath and read the pressure p,, of the contained gas on
the manometer. Let us say that, in a particular case, p, =
800 torr. (b) Immerse the bulb in the bath whose tempera-
ture is to be measured and read the new pressure p. Calcu-
late T* from Eq. 21-6, in which X is replaced with p and X,
with p,.. The result, which we regard as provisional, is plot-
ted as a point at 800 torr in Fig. 21-5.

Step 2: Return the thermometer bulb to the triple-point
bath and remove some of the gas, thus decreasing its den-
sity. Now p,. has a smaller value—say, 400 torr. Then we
return the bulb to the bath whose temperature we are trying
to find, measure a new value of p, and calculate a new pro-
visional temperature 7*, also plotted in Fig. 21-5.

We continue this procedure, reducing the amount of gas
in the bulb step by step and, at each new lower value of p,,
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FIGURE 21-5. As the pressure of the nitrogen gas in a con-
stant-volume gas thermometer is reduced from 800 torr to 400 and
then to 200, the temperature deduced for the system approaches a
limit corresponding to a pressure of zero. Other gases approach
the same limit. The full range of the vertical scale is about 1 K for
typical conditions.

calculating 7*. If we plot the values of T* against p,., we
can extrapolate the resulting curve to the intersection with
the axis at p, = 0. The data points for nitrogen gas and the
resultant straight-line extrapolation are shown in Fig. 21-5.

If we repeat this step-wise extrapolation procedure for
gases other than nitrogen, we obtain results also shown in
Fig. 21-5. We see that, as the triple-point pressure p,. (and
thus the gas density) is reduced, the temperature readings of
constant-volume gas thermometers approach the same
value 7, no matter what gas is used. We can regard T as the
temperature of the system and we define an ideal gas tem-
perature scale:

T = (273.16 K) lim -

Pe—0 Pu

(constant V). (21-7)

In this context, we define an “ideal gas” to be a gas that
would read the same temperature 7 at all pressures, with no
need for extrapolation. We will say more about the ideal gas
in Section 21-5.

If temperature is to be a truly fundamental physical
quantity it is absolutely necessary that its definition be in-
dependent of the properties of specific materials. It would
not do, for example, to have such a basic quantity as tem-
perature depend on the thermal expansivity of mercury, the
electrical resistivity of platinum, or any other such “hand-
book™ property. We choose the gas thermometer as our
standard precisely because no such properties are involved
in its operation. You can use any gas and you always get the
same answer.

The lowest temperature that can be measured with a gas
thermometer is about 1 K. To obtain this temperature we
must use low-pressure helium, which remains a gas at
lower temperatures than any other gas.
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TABLE 21-1 Temperatures of Selected Systems

System Temperature (K)
Plasma in fusion test reactor 108
Center of Sun 107
Surface of Sun 6 X 103
Melting point of tungsten 3.6 X 10°
Freezing point of water 2.7 X 107
Normal boiling point of N, 77
Normal boiling point of “He 4.2
Mean temperature of universe 2.7
3He—*He dilution refrigerator 5% 1073
Adiabatic demagnetization of paramagnetic salt 1073
Bose—Einstein condensation experiments 2% 1078

It can be shown that temperatures measured with the
constant-volume gas thermometer are true Kelvin tempera-
tures in the range in which the gas thermometer can be
used. We must use special methods to measure Kelvin tem-
peratures outside of this range. Table 21-1 lists the Kelvin
temperatures of some systems and processes.

The International Temperature Scale

Precise measurement of a temperature with a gas ther-
mometer is a difficult task, requiring many months of
painstaking laboratory work and, when completed, has
been said to be an international event. In practice therefore,
the gas thermometer is used only to establish certain fixed

TABLE 21-2 Primary Fixed Points on the 1990
International Temperature Scale”

Substance State Temperature (K)
Helium Boiling point 3-5¢
Hydrogen Triple point 13.8033
Hydrogen Boiling point” 17.025-17.045¢
Hydrogen Boiling point 20.26-20.28¢
Neon Triple point 24.5561
Oxygen Triple point 54.3584
Argon Triple point 83.8058
Mercury Triple point 234.3156
Water Triple point 273.16
Gallium Melting point 302.9146
Indium Freezing point 429.7485
Tin Freezing point 505.078
Zinc Freezing point 692.677
Aluminum Freezing point 933.473
Silver Freezing point 1234.93
Gold Freezing point 1337.33
Copper Freezing point 1357.77

¢ See “The International Temperature Scale of 1990 (ITS-90),” by H.
Preston-Thomas, Metrologia, 27 (1990), p. 3.

b This boiling point is for a pressure of % atm. All other boiling points,
melting points, or freezing points are for a pressure of 1 atm.

¢ The temperature of the boiling point varies somewhat with the pressure
of the gas above the liquid. The temperature scale gives the relationship
between T and p that can be used to calculate T for a given p.

points that can then be used to calibrate other more conve-
nient secondary thermometers.

The International Temperature Scale has been adopted
for the calibration of thermometers for scientific or indus-
trial use. This scale consists of a set of procedures for pro-
viding in practice the best possible approximations to the
Kelvin scale. The adopted scale consists of a set of fixed
points, along with specific devices to be used for interpolat-
ing between these fixed points and extrapolating beyond the
highest fixed point. The International Committee of
Weights and Measures reviews and refines the scale about
every 20 years. Table 21-2 shows the fixed points of the
1990 version of the International Temperature Scale.

21-4 THERMAL EXPANSION

You can often loosen a tight metal jar lid by holding it un-
der a stream of hot water. As its temperature rises, the metal
lid expands slightly relative to the glass of the jar. Thermal
expansion is not always desirable, as Fig. 21-6 suggests.
Roadways of bridges usually include expansion slots to al-
low for changes in length of the roadway as the temperature
changes.

Pipes at refineries often include an expansion loop, so
that the pipe will not buckle as the temperature rises. Mate-
rials used for dental fillings have expansion properties simi-
lar to those of tooth enamel. In aircraft manufacture, rivets
and other fasteners are often designed so that they are to be
cooled in dry ice before insertion and then allowed to ex-

FIGURE 21-6. Railroad tracks distorted because of thermal
expansion on a very hot day. Railroad tracks today come in 1500-
ft lengths and, to prevent buckling, are laid at or near the maxi-
mum annual temperature of the locality.
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FIGURE 21-7. A bimetallic strip, consisting of a strip of brass
and a strip of steel welded together, at temperature 7;,. At temper-
atures higher than 77, the strip bends as shown; at lower tempera-
tures it bends the other way. Many thermostats operate on this

principle, using the motion of the end of the strip to make or break
an electrical contact.

pand to a tight fit. Thermometers and thermostats may be
based on the differences in expansion between the compo-
nents of a bimetallic strip; see Fig. 21-7. In a thermometer
of a familiar type, the bimetallic strip is coiled into a helix
that winds and unwinds as the temperature changes; see
Fig. 21-8. The familiar liquid-in-glass thermometers are
based on the fact that liquids such as mercury or alcohol ex-
pand to a different (greater) extent than do their glass con-
tainers.

We can understand this expansion by considering a sim-
ple model of the structure of a crystalline solid. The atoms
are held together in a regular array by electrical forces,
which are like those that would be exerted by a set of
springs connecting the atoms. We can thus visualize the
solid body as a microscopic bedspring (Fig. 21-9). These
“springs” are quite stiff and not at all ideal (see Problem 1

BearingJ

\\ Pointer

Shaft

_——Helical bimetal
element

N

FIGURE 21-8. A thermometer based on a bimetallic strip. The
strip is formed into a helix, which coils or uncoils as the tempera-
ture is changed.

FIGURE 21-9. A solid behaves in many ways as if it were a
collection of atoms joined by elastic forces (here represented by
springs).

of Chapter 17), and there are about 10?* of them per cubic
centimeter. At any temperature the atoms of the solid are
vibrating. The amplitude of vibration is about 107° cm,
about one-tenth of an atomic diameter, and the frequency is
about 10" Hz. When the temperature is increased, the
atoms vibrate at larger amplitude, and the average distance
between atoms increases. (See the discussion of the micro-
scopic basis of thermal expansion at the end of this sec-
tion.) This leads to an expansion of the whole solid body.

The change in any linear dimension of the solid, such as
its length, width, or thickness, is called a linear expansion.
If the length of this linear dimension is L, the change in
temperature AT causes a change in length AL. We find
from experiment that, if AT is small enough, this change in
length AL is proportional to the temperature change AT
and to the original length L. Hence we can write

AL = aL AT, (21-8)

where «, called the coefficient of linear expansion, has dif-
ferent values for different materials. Rewriting this formula,
we obtain
_AL/L
“T AT

(21-9)

so that « has the meaning of a fractional change in length
per degree temperature change.

Strictly speaking, the value of « depends on the actual
temperature and the reference temperature chosen to deter-
mine L (see Problem 5). However, its variation is usually
negligible compared to the accuracy with which measure-
ments need to be made. It is often sufficient to choose an
average value that can be treated as a constant over a cer-
tain temperature range. In Table 21-3 we list the experimen-
tal values for the average coefficient of linear expansion of
several common solids. For all the substances listed, the
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TABLE 21-3 Some Average Coefficients of
Linear Expansion®

Substance (107 per C°)
Ice 51
Lead 29
Aluminum 23
Brass 19
Copper 17
Steel 11
Glass (ordinary) 9
Glass (Pyrex) 3.2
Invar alloy 0.7
Quartz (fused) 0.5

“ Typical average values in the temperature range 0°C to 100°C are shown,
except for ice in which the range is — 10°C to 0°C.

change in size consists of an expansion as the temperature
rises, because « is positive. The order of magnitude of the
expansion is about 1 millimeter per meter length per 100
Celsius degrees. (Note the use of C°, not °C, to express
temperature changes here. Note also, that since 1 K is the
same as 1 C°, we can use either Kelvin or Celsius tempera-
ture differences in Eq. 21-9.)

SAMPLE PROBLEM 21-2. A steel metric scale is to be
ruled so that the millimeter intervals are accurate to within about
5 X 1073 mm at a certain temperature. What is the maximum
temperature variation allowable during the ruling?

Solution From Eq. 21-8, we have

AT = AL 5 X 107 mm
al (11 X 107%C°)(1.0 mm)

=45C°,

where we have used the value of « for steel from Table 21-3. The
temperature during the ruling must be kept constant to within
about 5 C°, and the scale must be used within that same interval
of temperature at which it was ruled.

Note that if the alloy invar were used instead of steel, we
could achieve the same precision over a temperature interval of
about 75 C°; or, equivalently, if we could maintain the same tem-
perature variation (5 C°), we could achieve an accuracy due to
temperature changes of about 3 X 107° mm.

For many solids, called isotropic, the percent change in
length for a given temperature change is the same for all
lines in the solid. The expansion is quite analogous to a
photographic enlargement, except that a solid is three-
dimensional. Thus, if you have a flat plate with a hole
punched in it, AL/L (= « AT) for a given AT is the same
for the length, thickness, face diagonal, body diagonal, and
hole diameter. Every line, whether straight or curved,
lengthens in the ratio « per degree temperature rise. If you
scratch your name on the plate, the line representing your
name has the same fractional change in length as any other
line. The analogy to a photographic enlargement is shown
in Fig. 21-10.

HHlHHHHlHHHHlHHHHlHHHHlHHHHlHH\H\lHHHHlHHHHlHHHH\H\
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FIGURE 21-10. A steel rule at two different temperatures. The
expansion increases in proportion in all dimensions: the scale, the
numbers, the hole, and the thickness are all increased by the same
factor. (The expansion shown is greatly exaggerated; to obtain
such an expansion would require a temperature increase of about
20,000 C°!1)

With these ideas in mind, you should be able to show
(see Exercises 22 and 23) that to a high degree of accuracy
the fractional change in area A per degree temperature
change for an isotropic solid is 2«, that is,

AA = 2aA AT, (21-10)

and the fractional change in volume V per degree tempera-
ture change for an isotropic solid is 3« that is,

AV = 3aVAT. 21-11)

Equations 21-8 to 21-11 cannot be applied to the expan-
sion of fluids, because fluids have no definite shape and so
the coefficient of linear expansion is not a meaningful
quantity for a fluid. Instead, we define the coefficient of vol-
ume expansion 3 of a fluid by analogy with Eq. 21-8 or
21-11:

AV = BVAT. 21-12)

For liquids, the coefficient of volume expansion is rela-
tively independent of the temperature. Liquids usually ex-
pand with increasing temperature (that is, 8 > 0). Typical
values of (B for liquids at room temperature are in the
range of 200 X 107%/C° to 1000 X 10~%C°, more than an
order of magnitude larger than the coefficient of volume
expansion of most solids (3a from Eq. 21-11). For gases,
[ is strongly dependent on temperature; in fact, for an
ideal gas (discussed in the next section) you can show that
B = 1/T with T expressed in kelvins (see Exercise 36).
For a gas at room temperature and constant pressure, 3 is
about 3300 X 107%C°, as much as an order of magnitude
larger than the coefficient of volume expansion for typical
liquids.

The most common liquid, water, does not behave like
most other liquids. In Fig. 21-11 we show the volume ex-
pansion curve for water. Note that above 4°C water expands
as the temperature rises, although not linearly. (That is, B is
not constant over these large temperature intervals.) As the
temperature is lowered from 4°C to 0°C, however, water
expands instead of contracting, thus decreasing its density,
which is the reason that lakes freeze first at their upper sur-
face. Such an expansion with decreasing temperature is not
observed in any other common liquid.
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FIGURE 21-11. (a) The specific volume (the volume occupied
by a particular mass) of water as a function of its temperature. The
specific volume is the inverse of the density (the mass per unit
volume). (b) An enlargement of the region near 4°C, showing a
minimum specific volume (or a maximum density).

Microscopic Basis of Thermal Expansion
(Optional)

On the microscopic level, thermal expansion of a solid sug-
gests an increase in the average separation between the
atoms in the solid. The potential energy curve for two adja-
cent atoms in a crystalline solid as a function of their inter-
nuclear separation is an asymmetric curve like that of Fig.
21-12. As the atoms move close together, their separation
decreasing from the equilibrium value r,, strong repulsive
forces come into play, and the potential energy rises steeply
(F = —dUl/dr); as the atoms move farther apart, their sepa-
ration increasing from the equilibrium value, somewhat
weaker attractive forces take over and the potential energy
rises more slowly. At a given vibrational energy the separa-
tion of the atoms changes periodically from a minimum to a
maximum value, the average separation being greater than
the equilibrium separation because of the asymmetric na-
ture of the potential energy curve. At still higher vibrational
energy the average separation is even greater. The effect is
enhanced because, as suggested by Fig. 21-12, the kinetic
energy is smaller at larger separations; thus the particles
move slower and spend more time at large separations,
which then contribute a larger share to the time average.

U(r)

i

rg —|

ry—»|

rg —»|

FIGURE 21-12. Potential energy curve for two adjacent atoms
in a solid as a function of their internuclear separation distance.
The equilibrium separation is r,. Because the curve is asymmet-
ric, the average separation (r;, r,) increases as the temperature
(T, T,) and the vibrational energy (E;, E,) increase.

Because the vibrational energy increases as the temperature
rises, the average separation between atoms increases with
temperature, and the entire solid expands.

Note that if the potential energy curve were symmetric
about the equilibrium separation, then the average separa-
tion would equal the equilibrium separation, no matter how
large the amplitude of the vibration. Hence thermal expan-
sion is a direct consequence of the deviation from symme-
try of the characteristic potential energy curve of solids.

It should be emphasized that the microscopic models
presented here are oversimplifications of a complex phe-
nomenon that can be treated with greater insight using sta-
tistical mechanics and quantum theory. |

21-5 THE IDEAL GAS

Figure 21-5 suggests that real gases such as oxygen, nitro-
gen, and helium differ from each other as far as the rela-
tions among their thermodynamic properties, such as pres-
sure or temperature, are concerned. However, this same
figure suggests that, as we examine such real gases at lower
and lower densities, their properties seem to converge. That
suggests the concept of an ideal gas—that is, a gas whose
properties represent the limiting behavior of real gases at
sufficiently low densities.

The ideal gas is an abstraction, but it is a useful abstrac-
tion because (1) real gases—at low enough densities—ap-
proximate the behavior of the ideal gas, and (2) the thermo-
dynamic properties of an ideal gas are related to each other
in a particularly simple way. Physics is full of useful ab-
stractions and we have met many of them, such as perfectly
elastic collisions, massless rods, and unstretchable strings.

Figure 21-13 shows schematically an arrangement with
which it is possible to study the properties of real gases
and, by extrapolating to sufficiently low densities, to de-
duce the properties of the ideal gas. An insulated cylinder
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FIGURE 21-13. Gas is confined to a cylinder that is in contact
with a thermal reservoir at the (adjustable) temperature 7. The pis-
ton exerts a total downward force Mg on the gas, which in equilib-
rium is balanced by the upward force due to the gas pressure. The
volume of the gas can be determined from a measurement of the
height % of the piston above the bottom of the cylinder, and the
temperature of the gas is measured with a suitable thermometer. A
gas supply permits additional gas to be added to the cylinder; we
assume that a mechanism is also provided for removing gas and
for changing the supply to admit different kinds of gas.

that rests on a thermal reservoir (a glorified hot plate) con-
tains a specified quantity of gas, which we can control by
adding or removing gas using the gas supply. The tempera-
ture of this reservoir—and thus of the gas—can be regu-
lated by turning a control knob. A piston, whose position
determines the volume of the gas, can move without fric-
tion up and down in the cylinder. Weights, shown here as
lead shot, can be added to or removed from the top of the
piston, thus determining the pressure exerted by the gas.
The variables pressure, volume, temperature, and quantity
of gas (number of moles n or number of molecules N) are
thus under our control.

From laboratory experiments with real gases, it was
found that their pressure p, volume V, and temperature T
are related, to a good approximation, by

pV = NkT (21-13)

Here N is the number of molecules contained in the volume
V, and k is a constant called the Boltzmann constant. Its
measured value is, to three significant figures,

k=138 X 1072 J/K. (21-14)

The temperature 7 in Eq. 21-13 must always be expressed
in kelvins.

It is often more useful to write Eq. 21-13 in a slightly
different form, expressing the quantity of gas not in terms
of the number of molecules N but in terms of the number of
moles n. (The mole is one of the seven SI base units; see
Section 1-5). Either measures the quantity of gas, and they
are related by

N = nN,, (21-15)

where N, is the Avogadro constant—that is, the number of
molecules contained in a mole of any substance. Its value is

N, = 6.02 X 10? molecules/mol. (21-16)
In terms of the number of moles, we can write Eq. 21-13 as
pV = nRT, (21-17)

where R = kN, is a new constant, called the molar gas
constant. Its value is

R = 8.31 J/mol - K. (21-18)

Equations 21-13 and 21-17 are completely equivalent forms
of the ideal gas law. This law represents an idealization of
the properties of real gases, and it works best as a descrip-
tion of real gases when the pressure and density are low.
That is why the lines in Fig. 21-5 representing different
gases converged to a single temperature as the pressure
(and thus the quantity) of gas was decreased. The ideal gas
law also shows why it is critical that the volume of gas in
the thermometer of Fig. 21-4 be kept constant, if we want
to examine the dependence of pressure on temperature.

In Chapter 22 we explore the ideal gas law by examining
the microscopic structure of the gas in terms of the proper-
ties of its molecules. It is also possible to “piece together”
this law by studying a single relationship between two of the
variables in the equation while the others are held constant.
Here are three examples of these experiments:

1. The TItalian investigator Amadeo Avogadro
(1776-1856), for whom the Avogadro constant is named,
discovered in 1811 that, under the same conditions of pres-
sure and temperature, equal volumes of different gases con-
tain the same number of molecules (V « N for constant p
and T'). At that time, the very existence of atoms and mole-
cules was much in dispute, and this discovery, known as
Avogadro’s law, was later to provide critical support for the
atomic theory.

2. The Anglo-Irish experimenter Robert Boyle
(1627-1691) discovered that, if the temperature of a fixed
amount of gas is held constant, then the pressure exerted by
the gas is inversely proportional to the volume that the gas
occupies (p « V! for constant 7 and N). This observation
is known as Boyle’s law.

3. If the pressure of a fixed quantity of gas is held con-
stant, experiment shows that the volume of the gas is di-
rectly proportional to its temperature (V =« T for constant p
and N). These experiments were carried out by the French
experimenters Joseph Louis Gay-Lussac (1778—-1850) and
J.-A.-C. Charles (1746—1823), and this relationship is thus
known either as Gay-Lussac’s law or Charles’ law.

SAMPLE PROBLEM 21-3. An insulated cylinder fitted
with a piston (Fig. 21-13) contains oxygen at a temperature of
20°C and a pressure of 15 atm in a volume of 22 liters. The piston
is lowered, decreasing the volume of the gas to 16 liters, and si-
multaneously the temperature is raised to 25°C. Assuming oxygen
to behave like an ideal gas under these conditions, what is the final
pressure of the gas?
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Solution From Eq. 21-13, since the quantity of gas remains un-
changed, we have
rivVi _ Ve

or

Because this is in the form of a ratio, we need not convert p and V
into SI units, but we must express T in absolute (Kelvin) tempera-
ture units. Thus

273+25K><22L

) = 21 atm.
273 + 20K 16 L

ps = (15 atm) <

ULTIPLE CHOICE

21-1 Temperature and Thermal Equilibrium
1. Consider four objects, A, B, C, and D. It is found that A and B
are in thermal equilibrium. It is also found that C and D are in
thermal equilibrium. However, A and C are not in thermal
equilibrium. One can conclude that
(A) B and D are in thermal equilibrium.
(B) B and D could be in thermal equilibrium, but might not
be.
(C) B and D cannot be in thermal equilibrium.
(D) the zeroth law of thermodynamics does not apply here,
because there are more than three objects.

2. Objects A and B are initially in thermal equilibrium. Objects
A and C are originally not in thermal equilibrium, but the two
are placed in thermal contact and quickly reach thermal equi-
librium. After doing this

(A) B and C will also be in thermal equilibrium.

(B) B and C could be in thermal equilibrium, but might not
be.

(C) B and C cannot be in thermal equilibrium.

21-2 Temperature Scales
3. At what temperature do the Fahrenheit and Celsius scales co-

incide?
(A) —40°F (B) O°F (C) 32°F
(D) 40°F (E) 104°F
4. At what temperature do the Fahrenheit and Kelvin scales co-
incide?
(A) —100°F (B) 273°F (C) 574°F (D) 844°F

21-3 Measuring Temperatures
21-4 Thermal Expansion

5. A large flat slab of metal at temperature 7, has a hole in it.
The metal is warmed to a new temperature 7 > 7,. Upon
warming, the area of the hole will

(A) increase. (B) decrease.

(C) remain the same size.

(D) possibly change size, depending on the shape of the
hole.

6. Why does a glass sometimes break if you quickly pour boil-
ing water into it?

(A) Hot water expands, pushing the glass out.

(B) The hot water cools when it touches the glass, shrink-
ing and pulling the glass in.

(C) The glass becomes hot and expands, causing the mole-
cules to break.

(D) The inside the glass expands faster than the outside of
the glass, causing the glass to break.

7. A mercury-filled glass thermometer is originally at equilib-
rium in a 20°C water bath. The thermometer is then immersed
in a 30°C water bath. The column of mercury in the ther-
mometer will

(A) rise to 30°C and then stop.

(B) first rise above 30°C, then return to 30°C and stop.

(C) first fall below 20°C, then rise to 30°C and stop.

(D) first fall below 20°C, then rise above 30°C, and finally
return to 30°C and stop.

8. A strip of copper metal is riveted to a strip of aluminum. The
two metals are then heated. What happens?
(A) The strip expands without bending.
(B) The strip expands and bends toward the copper.
(C) The strip expands and bends toward the aluminum.

9. The daily temperature variation of the Golden Gate bridge in
San Francisco can be in excess of 20 C°. The bridge is ap-
proximately 2 km long and is made of steel (with an asphalt
covering on the roadway).

(a) What is the approximate change in length of the bridge
with this temperature variation?
(A) 44 cm (B) 44 cm (C) 44m (D) 44 m
(b) If the bridge builders neglected to include expansion
joints, then approximately how large of a “bump” would form
in the middle of the bridge when it expanded?
(A) 2.1 cm (B) 21 cm (C) 2.1 m
21-5 The Ideal Gas

10. Which has the higher density (mass per unit volume)—dry
air or humid air? Assume that both have the same temperature
and pressure.

(A) Dry air (B) Humid air
(C) The densities are the same.

(D) 21'm

11. Which of the following has the largest particle density (mole-
cules per unit volume)?
(A) 0.8 L of nitrogen gas at 350 K and 100 kPa
(B) 1.0 L of hydrogen gas at 350 K and 150 kPa
(C) 1.5 L of oxygen gas at 300 K and 80 kPa
(D) 2.0 L of helium gas at 300 K and 120 kPa

12. Four different containers each hold 0.5 moles of one of the
following gases. Which is at the highest temperature?
(A) 8.0 L of helium gas at 120 kPa
(B) 6.0 L of neon gas at 160 kPa
(C) 4.0 L of argon gas at 250 kPa
(D) 3.0 L of krypton gas at 300 kPa
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UESTIONS

1. Is temperature a microscopic or macroscopic concept?

10.

11.

12.

. Can we define temperature as a derived quantity, in terms of

length, mass, and time? Think of a pendulum, for example.

. Absolute zero is a minimum temperature. Is there a maximum

temperature?

. Can one object be hotter than another if they are at the same

temperature? Explain.

. Lobster traps are designed so that a lobster can easily get in, but

cannot easily get out. Can a diathermic wall be created that al-
lows heat to flow through in one direction only? Explain.

. Are there physical quantities other than temperature that tend

to equalize if two different systems are joined?

. A piece of ice and a warmer thermometer are suspended in an

insulated evacuated enclosure so that they are not in contact.
Why does the thermometer reading decrease for a time?

. What qualities make a particular thermometric property suit-

able for use in a practical thermometer?

. What difficulties would arise if you defined temperature in

terms of the density of water?

Let p; be the pressure of the bulb of a constant-volume gas
thermometer when the bulb is at the triple-point temperature
of 273.16 K and let p be the pressure when the bulb is at
room temperature. Given are three constant-volume gas ther-
mometers: for A the gas is oxygen and p; = 20 cm Hg; for B
the gas is also oxygen but p; = 40 cm Hg; for C the gas is
hydrogen and p; = 30 cm Hg. The measured values of p for
the three thermometers are p,, pg, and pc. (@) An approxi-
mate value of the room temperature 7 can be obtained with
each of the thermometers using

T, = (273.16 K)(p,/20 cm Hg),
Ty = (273.16 K)(p/40 cm Hg),
Te = (273.16 K)(pc/30 cm Hg).

Mark each of the following statements true or false: (1) With
the method described, all three thermometers will give the
same value of 7. (2) The two oxygen thermometers will agree
with each other but not with the hydrogen thermometer. (3)
Each of the three will give a different value of 7. (b) In the
event that there is a disagreement among the three thermome-
ters, explain how you would change the method of using them
to cause all three to give the same value of 7.

The editor-in-chief of a well-known business magazine, dis-
cussing possible warming effects associated with the increas-
ing concentration of carbon dioxide in the Earth’s atmosphere
(greenhouse effect), wrote: “The polar regions might be three
times warmer than now . . .” What do you suppose he
meant, and what did he say literally? (See “Warmth and Tem-
perature: A Comedy of Errors,” by Albert A. Bartlett, The
Physics Teacher, November 1984, p. 517.)

Although the absolute zero of temperature seems to be exper-
imentally unattainable, temperatures as low as 0.00000002 K
have been achieved in the laboratory. Why would physicists
strive, as indeed they do, to obtain still lower temperatures?
Isn’t this low enough for all practical purposes?

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

CHAPTER 21 / TEMPERATURE

You put two uncovered pails of water, one containing hot water
and one containing cold water, outside in below-freezing
weather. The pail with the hot water will usually begin to freeze
first. Why? What would happen if you covered the pails?

Can a temperature be assigned to a vacuum?

Does our “temperature sense”” have a built-in sense of direction;
that is, does hotter necessarily mean higher temperature, or is
this just an arbitrary convention? Celsius, by the way, originally
chose the steam point as 0°C and the ice point as 100°C.

Many medicine labels inform the user to store below 86°F.
Why 86? (Hint: Change to Celsius.) (See The Science Al-
manac, 1985-1986, p. 430.)

How would you suggest measuring the temperature of (a) the
Sun, (b) the Earth’s upper atmosphere, (c¢) an insect, (d) the
Moon, (e) the ocean floor, and (f) liquid helium?

Considering the Celsius, Fahrenheit, and Kelvin scales, does
any one stand out as “nature’s scale”? Discuss.

Is one gas any better than another for purposes of a standard
constant-volume gas thermometer? What properties are desir-
able in a gas for such purposes?

State some objections to using water-in-glass as a thermome-
ter. Is mercury-in-glass an improvement? If so, explain why.
What are the dimensions of «, the coefficient of linear expan-
sion? Does the value of « depend on the unit of length used?
When Fahrenheit degrees are used instead of Celsius degrees
as the unit of temperature change, does the numerical value of
a change? If so, how? If not, prove it.

A metal ball can pass through a metal ring. When the ball is
heated, however, it gets stuck in the ring. What would happen
if the ring, rather than the ball, were heated?

A bimetallic strip, consisting of two different metal strips riv-
eted together, is used as a control element in the common
thermostat. Explain how it works.

Two strips, one of iron and one of zinc, are riveted together
side by side to form a straight bar that curves when heated.
Why is the iron on the inside of the curve?

Explain how the period of a pendulum clock can be kept con-
stant with temperature by attaching vertical tubes of mercury
to the bottom of the pendulum.

Why should a chimney be freestanding—that is, not part of
the structural support of the house?

Water expands when it freezes. Can we define a coefficient of
volume expansion for the freezing process?

Explain why the apparent expansion of a liquid in a glass bulb
does not give the true expansion of the liquid.

Does the change in volume of an object when its temperature
is raised depend on whether the object has cavities inside,
other things being equal?

Why is it much more difficult to make a precise determination
of the coefficient of expansion of a liquid than of a solid?

A common model of a solid assumes the atoms to be points
executing simple harmonic motion about mean lattice posi-
tions. What would be the coefficient of linear expansion of
such a lattice?

Explain the fact that the temperature of the ocean at great
depths is very constant the year round, at a temperature of
about 4°C.

Explain why lakes freeze first at the surface.
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34. What causes water pipes to burst in the winter? 37. Itis found that the weight of an empty, flat, thin plastic bag is

35. What can you conclude about how the melting point of ice not changed when the bag is filled with air. Why not?

depends on pressure from the fact that ice floats on water?

36. Two equal-size rooms communicate through an open doorway.

However, the average temperatures in the two rooms are main-
tained at different values. In which room is there more air?

XERCISES

38.
39.

Why does smoke rise, rather than fall, from a lighted candle?
Do the pressure and volume of air in a house change when the
furnace raises the temperature significantly? If not, is the
ideal gas law violated?

21-1 Temperature and Thermal Equilibrium 9. The amplification or gain of a transistor amplifier may de-
21-2 Temperature Scales pend on the temperature. Th.e gain for a certain amphﬁe.r gt
o ] ) . room temperature (20.0°C) is 30.0, whereas at 55.0°C it is
1. The b0111_ng point and the melting pQInt for water on the 35.2. What would the gain be at 28.0°C if the gain depends
Fahrenheit scale were chosen so the difference bet?veen the linearly on temperature over this limited range?
two temperatures would be 180 F°, a number that is evenly . .
- . 10. If the gas temperature at the steam point is 373.15 K, what is
divisible by 2, 3, 4, 5, 6, and 9. Devise a new temperature .o .

O _ the limiting value of the ratio of the pressures of a gas at the
scale S so that absolute zero is 0°S and Top, varer — Tinp,water = steam point and at the triple point of water when the gas is
180 S°. (a) What is the conversion formula from Celsius to S? P piep &

. kept at constant volume?
(b) What are Ty, yyer a0d Tryp, yager in S?
11. Two constant-volume gas thermometers are assembled, one

. Absolute zero is —273.15°C. Find absolute zero on the
Fahrenheit scale.

. Repeat Exercise 1, except choose the new temperature scale
Q so that absolute zero is 0°Q and Ty, waer = Tmp, water =
100 Q°. (a) What is the conversion formula from Celsius to
Q? (b) What is Ty, wuer and Ty, warer in Q? () This scale actu-
ally exists. What is the official name?

. (a) The temperature of the surface of the Sun is about 6000
K. Express this on the Fahrenheit scale. (b) Express normal
human body temperature, 98.6°F on the Celsius scale. (¢) In
the continental United States, the lowest officially recorded
temperature is — 70°F at Rogers Pass, Montana. Express this
on the Celsius scale. (d) Express the normal boiling point of
oxygen, — 183°C, on the Fahrenheit scale. (¢) At what Cel-
sius temperature would you find a room to be uncomfortably
warm?

. If your doctor tells you that your temperature is 310 K,
should you worry? Explain your answer.

. At what temperature is the Fahrenheit scale reading equal to
(a) twice that of the Celsius and (b) half that of the Celsius?

21-3 Measuring Temperatures

7. A resistance thermometer is a thermometer in which the elec-

trical resistance changes with temperature. We are free to de-
fine temperatures measured by such a thermometer in kelvins
(K) to be directly proportional to the resistance R, measured
in ohms (£)). A certain resistance thermometer is found to
have a resistance R of 90.35 ) when its bulb is placed in wa-
ter at the triple-point temperature (273.16 K). What tempera-
ture is indicated by the thermometer if the bulb is placed in an
environment such that its resistance is 96.28 ()?

. A thermocouple is formed from two different metals, joined
at two points in such a way that a small voltage is produced
when the two junctions are at different temperatures. In a par-
ticular iron—constantan thermocouple, with one junction held
at 0°C, the output voltage varies linearly from O to 28.0 mV
as the temperature of the other junction is raised from 0 to
510°C. Find the temperature of the variable junction when the
thermocouple output is 10.2 mV.

using nitrogen as the working gas and the other using helium.
Both contain enough gas so that p, = 100 cm Hg. What is the
difference between the pressures in the two thermometers if
both are inserted into a water bath at the boiling point? Which
pressure is the higher of the two? See Fig. 21-5.

21-4 Thermal Expansion

12.

13.

14.

15.

16.

17.

18.

19.

20.

An aluminum flagpole is 33 m high. By how much does its
length increase as the temperature increases by 15 C°?

The Pyrex glass mirror in the telescope at the Mount Palomar
Observatory (the Hale telescope) has a diameter of 200 in.
The most extreme temperatures ever recorded on Palomar
Mountain are — 10°C and 50°C. Determine the maximum
change in the diameter of the mirror.

A circular hole in an aluminum plate is 2.725 cm in diameter
at 12°C. What is its diameter when the temperature of the
plate is raised to 140°C?

Steel railroad tracks are laid when the temperature is — 5.0°C.
A standard section of rail is then 12.0 m long. What gap
should be left between rail sections so that there is no com-
pression when the temperature gets as high as 42°C?

A glass window is 200 cm by 300 cm at 10°C. By how much
has its area increased when its temperature is 40°C? Assume
that the glass is free to expand.

A brass cube has an edge length of 33.2 cm at 20.0°C. Find
(a) the increase in surface area and (b) the increase in volume
when it is heated to 75.0°C.

What is the volume of a lead ball at — 12°C if its volume at
160°C is 530 cm??

(a) From the graph of Fig. 21-11, estimate the coefficient of
volume expansion for water at room temperature (20°C). (b)
What is the coefficient of volume expansion near 4°C?

Soon after the Earth formed, heat released by the decay of ra-
dioactive elements raised the average internal temperature
from 300 to 3000 K, at about which value it remains today.
Assuming an average coefficient of volume expansion of
3.2 X 1073 K™!, by how much has the radius of the Earth in-
creased since its formation?
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21.

22.

23.

24.

25.

26.

27.

28.

A rod is measured to be 20.05 cm long using a steel ruler at a
room temperature of 20°C. Both the rod and the ruler are
placed in an oven at 270°C, where the rod now measures
20.11 cm using the same rule. Calculate the coefficient of
thermal expansion for the material of which the rod is made.
The area A of a rectangular plate is ab. Its coefficient of linear
expansion is a. After a temperature rise A7, side a is longer
by Aa and side b is longer by Ab. Show that if we neglect
the small quantity AaAb/ab (see Fig. 21-14), then AA =
2aAAT, verifying Eq. 21-10.

FIGURE 21-14. Exercise 22.

Prove that, if we neglect extremely small quantities, the
change in volume of a solid upon expansion through a tem-
perature rise AT is given by AV = 3aVAT, where « is the co-
efficient of linear expansion. See Eq. 21-11.

When the temperature of a copper penny (which is not pure
copper) is raised by 100 C°, its diameter increases by 0.18%.
Find the percent increase in (a) the area of a face, (b) the
thickness, (c¢) the volume, and (d) the mass of the penny. (e)
Calculate its coefficient of linear expansion.

Density is mass divided by volume. If the volume V is tem-
perature dependent, so is the density p. Show that the change
in density A p with change in temperature AT is given by

Ap = —PBpAT,

where 3 is the coefficient of volume expansion. Explain the
minus sign.

When the temperature of a metal cylinder is raised from 60 to
100°C, its length increases by 0.092%. (a) Find the percent
change in density. (b) Identify the metal.

A steel rod is 3.000 cm in diameter at 25°C. A brass ring has
an interior diameter of 2.992 cm at 25°C. At what common
temperature will the ring just slide onto the rod?

A composite bar of length L = L, + L, is made from a bar of
material 1 and length L, attached to a bar of material 2 and
length L, as shown in Fig. 21-15. (a) Show that the effective
coefficient of linear expansion « for this bar is given by a =
(1L + ayLy)/L. (b) Using steel and brass, design such a
composite bar whose length is 52.4 cm and whose effective
coefficient of linear expansion is 13 X 10~%C°.

Ly L,

L

A
Y

FIGURE 21-15. Exercise 28.
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At 100°C a glass flask is completely filled by 891 g of mer-
cury. What mass of mercury is needed to fill the flask at
—35°C? (The coefficient of linear expansion of glass is
9.0 X 107%/C°®; the coefficient of volume expansion of mer-
cury is 1.8 X 1074C°.)

(a) Prove that the change in rotational inertia / with tempera-
ture of a solid object is given by Al = 2al AT. (b) A thin uni-
form brass rod, spinning freely at 230 rev/s about an axis per-
pendicular to it at its center, is heated without mechanical
contact until its temperature increases by 170 C°. Calculate
the change in angular velocity.

A cylinder placed in frictionless bearings is set rotating about
its axis. The cylinder is then heated, without mechanical con-
tact, until its radius is increased by 0.18%. What is the per-
cent change in the cylinder’s (a) angular momentum, (b) an-
gular velocity, and (c) rotational energy?

(a) Prove that the change in period P of a physical pendulum
with temperature is given by AP = %aPAT. (b) A clock pen-
dulum made of invar has a period of 0.500 s and is accurate at
20°C. If the clock is used in a climate where the temperature
averages 30°C, what approximate correction to the time given
by the clock is necessary at the end of 30 days?

A pendulum clock with a pendulum made of brass is designed
to keep accurate time at 20°C. How much will the error be, in
seconds per hour, if the clock operates at 0°C?

An aluminum cup of 110 cm? capacity is filled with glycerin
at 22°C. How much glycerin, if any, will spill out of the cup if
the temperature of the cup and glycerin is raised to 28°C?
(The coefficient of volume expansion of glycerin is 5.1 X
1074/C°.)

A 1.28-m-long vertical glass tube is half-filled with a liquid at
20.0°C. How much will the height of the liquid column
change when the tube is heated to 33.0°C? Assume that
Qs = 1.1 X 107%/C° and Bygia = 4.2 X 1075/C°,

-5 The Ideal Gas

(a) Using the ideal gas law and the definition of the coeffi-
cient of volume expansion (Eq. 21-12), show that 8 = 1/T for
an ideal gas at constant pressure. (b) In what units must 7" be
expressed? If T is expressed in those units, can you express 3
in units of (C°)~!? (c) Estimate the value of B for an ideal gas
at room temperature.

(a) Calculate the volume occupied by 1.00 mol of an ideal
gas at standard conditions—that is, pressure of 1.00 atm
(= 1.01 X 10° Pa) and temperature of 0°C (= 273 K). (b)
Show that the number of molecules per cubic centimeter (the
Loschmidt number) at standard conditions is 2.68 X 10",

The best vacuum that can be attained in the laboratory corre-
sponds to a pressure of about 1078 atm, or 1.01 X 107" Pa.
How many molecules are there per cubic centimeter in such a
vacuum at 22°C?

A quantity of ideal gas at 12.0°C and a pressure of 108 kPa
occupies a volume of 2.47 m®. (¢) How many moles of the
gas are present? (b) If the pressure is now raised to 316 kPa
and the temperature is raised to 31.0°C, how much volume
will the gas now occupy? Assume there are no leaks.

Oxygen gas having a volume of 1130 cm?® at 42.0°C and a
pressure of 101 kPa expands until its volume is 1530 cm? and
its pressure is 106 kPa. Find (a) the number of moles of oxy-
gen in the system and (b) its final temperature.
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42.

43.
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PROBLEMS

An automobile tire has a volume of 988 in.? and contains air
at a gauge pressure of 24.2 Ib/in.> where the temperature is
—2.60°C. Find the gauge pressure of the air in the tire when
its temperature rises to 25.6°C and its volume increases to
1020 in.. (Hint: It is not necessary to convert from British to
SI units. Why? Use p,m = 14.7 Ib/in.2.)

Estimate the mass of the Earth’s atmosphere. Express your es-
timate as a fraction of the mass of the Earth. Recall that at-
mospheric pressure equals 101 kPa.

An air bubble of 19.4 cm® volume is at the bottom of a lake
41.5 m deep where the temperature is 3.80°C. The bubble
rises to the surface, which is at a temperature of 22.6°C. Take
the temperature of the bubble to be the same as that of the
surrounding water and find its volume just before it reaches
the surface.

An open—closed pipe of length L = 25.0 m contains air at at-
mospheric pressure. It is thrust vertically into a freshwater
lake until the water rises halfway up in the pipe, as shown in

ROBLEMS

. It is an everyday observation that hot and cold objects cool

down or warm up to the temperature of their surroundings. If
the temperature difference AT between an object and its sur-
roundings (AT = T,; — Ty,) is not too great, the rate of cool-
ing or warming of the object is proportional, approximately,
to this temperature difference; that is,

dAT

= —AAT
i (AT),

where A is a constant. The minus sign appears because AT de-
creases with time if AT is positive and increases if AT is nega-
tive. This is known as Newton’s law of cooling. (a) On what
factors does A depend? What are its dimensions? (b) If at some
instant 1 = 0 the temperature difference is AT, show that it is

AT = ATye ™

at a time ¢ later.

. Early in the morning the heater of a house breaks down. The

outside temperature is — 7.0°C. As a result, the inside temper-
ature drops from 22 to 18°C in 45 min. How much longer will
it take for the inside temperature to fall by another 4.0 C°?
Assume that the outside temperature does not change and that
Newton’s law of cooling applies; see Problem 1.

. Show that when the temperature of a liquid in a barometer

changes by AT, and the pressure is constant, the height &
changes by Ah = BhAT, where B is the coefficient of volume
expansion of the liquid. Neglect the expansion of the glass tube.

. A particular gas thermometer is constructed of two gas-

containing bulbs, each of which is put into a water bath, as
shown in Fig. 21-17. The pressure difference between the two
bulbs is measured by a mercury manometer as shown in the
figure. Appropriate reservoirs, not shown in the diagram,
maintain constant gas volume in the two bulbs. There is no
difference in pressure when both baths are at the triple point
of water. The pressure difference is 120 mm Hg when one
bath is at the triple point and the other is at the boiling point
of water. Finally, the pressure difference is 90.0 mm Hg when
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Fig. 21-16. What is the depth / of the lower edge of the pipe?
Assume that the temperature is the same everywhere and does
not change.

Air

Al

I
FIGURE 21-16. Exercise 44.

one bath is at the triple point and the other is at an unknown
temperature to be measured. Find the unknown temperature.

FIGURE 21-17. Problem 4.

5. Show that if « is dependent on the temperature 7', then

T
L~LO[1 +f a(T)dT},
7,

where L is the length at the reference temperature 7.

6. In a certain experiment, it was necessary to be able to move a

small radioactive source at selected, extremely slow speeds.
This was accomplished by fastening the source to one end of
an aluminum rod and heating the central section of the rod in
a controlled way. If the effective heated section of the rod in
Fig. 21-18 is 1.8 cm, at what constant rate must the tempera-
ture of the rod be made to change if the source is to move at a
constant speed of 96 nm/s?

Radioactive Electric
source heater

AN

1.8 cm ||[<«— Clamp

FIGURE 21-18. Problem 6.
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10.

11.

12.

(a) Show that if the lengths of two rods of different solids are
inversely proportional to their respective coefficients of linear
expansion at the same initial temperature, the difference in
length between them will be constant at all temperatures. (b)
‘What should be the lengths of a steel and a brass rod at 0°C
so that at all temperatures their difference in length is 0.30 m?

. As a result of a temperature rise of 32 C°, a bar with a crack

at its center buckles upward, as shown in Fig. 21-19. If the
fixed distance L, = 3.77 m and the coefficient linear expan-
sion is 25 X 107%/C°, find x, the distance to which the center

rises.
T
}
Lo ——>
FIGURE 21-19. Problem 8.
. Figure 21-20 shows the variation of the coefficient of volume

expansion of water between 4°C and 20°C. The density of
water at 4°C is 1000 kg/m?. Calculate the density of water at
20°C.

0.0002

0.0001

expansion (/C°)

0.0000
4 6 8 10 12 14 16 18 20

Temperature (°C)

Coefficient of volume

FIGURE 21-20. Problem 9.

Consider a mercury-in-glass thermometer. Assume that the
cross section of the capillary is constant at A and that V is the
volume of the bulb of mercury at 0.00°C. Suppose that the
mercury just fills the bulb at 0.00°C. Show that the length L
of the mercury column in the capillary at a temperature 7, in
°C, is

\%4
L= X(B = 3a)T,

that is, proportional to the temperature, where S is the coeffi-
cient of volume expansion of mercury and « is the coefficient
of linear expansion of glass.

Three equal-length straight rods, of aluminum, invar, and
steel, all at 20°C, for an equilateral triangle with hinge pins at
the vertices. At what temperature will the angle opposite the
invar rod be 59.95°? See Appendix I for needed trigonometric
formulas.

A glass tube nearly filled with mercury is attached in tandem
to the bottom of an iron pendulum rod 100 cm long. How
high must the mercury be in the glass tube so that the center
of mass of this pendulum will not rise or fall with changes in

13.

14.

15.

16.

17.
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temperature? (The cross-sectional area of the tube is equal to
that of the iron rod. Neglect the mass of the glass. Iron has a
density of 7.87 X 103 kg/m? and a coefficient of linear expan-
sion equal to 12 X 107%/C°. The coefficient of volume expan-
sion of mercury is 18 X 1075/C°.)

An aluminum cube 20 cm on an edge floats on mercury. How
much farther will the block sink when the temperature rises
from 270 to 320 K? (The coefficient of volume expansion of
mercury is 1.8 X 1074C°.)

Dumet wire was developed to allow for the expansion of glass
in lightbulbs. The wire consists of a core of nickel—steel (in-
var) surrounded by a sheath of copper. The diameters of the
core and of the sheath are chosen so that the wire duplicates
the expansion characteristics of glass. (a) Show that the ratio
of the nickel—steel radius to that of the copper sheath should

Tnickel-steel

be
_ \/ Qcopper — Xglass
¥ «, -

copper copper nickel-steel

(b) What is a typical value for this ratio?

The distance between the towers of the main span of the
Golden Gate Bridge near San Francisco is 4200 ft (Fig. 21-
21). The sag of the cable halfway between the towers at S0°F
is 470 ft. Take « = 6.5 X 107%/F° for the cable and compute
(a) the change in length of the cable and (b) the change in sag
for a temperature change from 10 to 90°F. Assume no bend-
ing or separation of the towers and a parabolic shape for the
cable.

FIGURE 21-21. Problem 15.

A weather balloon is loosely inflated with helium at a pres-
sure of 1.00 atm (= 76.0 cm Hg) and a temperature of
22.0°C. The gas volume is 3.47 m®. At an elevation of
6.50 km, the atmospheric pressure is down to 36.0 cm Hg,
and the helium has expanded, being under no restraint from
the confining bag. At this elevation the gas temperature is
—48.0°C. What is the gas volume now?

Two vessels of volumes 1.22 L and 3.18 L contain krypton
gas and are connected by a thin tube. Initially, the vessels are
at the same temperature, 16.0°C, and the same pressure,
1.44 atm. The larger vessel is then heated to 108°C while the
smaller one remains at 16.0°C. Calculate the final pressure.
(Hint: There are no leaks.)
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19.

20.

COMPUTER PROBLEMS

Container A contains an ideal gas at a pressure of 5.0 X
10° Pa and at a temperature of 300 K. It is connected by a
thin tube to container B with four times the volume of A; see
Fig. 21-22. B contains the same ideal gas at a pressure of
1.0 X 10° Pa and at a temperature of 400 K. The connecting
valve is opened, and equilibrium is achieved at a common
pressure while the temperature of each container is kept con-
stant at its initial value. What is the final pressure in the sys-
tem?

RO . S
A .. o.. .°.. .: ..
B

FIGURE 21-22. Problem 18.

The variation in pressure in the Earth’s atmosphere, assumed
to be at a uniform temperature, is given by p = pye M&/RT,
where M is the molar mass of the air. (See Section 15-3.)
Show that ny = nyge MR where ny is the number of mole-
cules per unit volume.

A soap bubble of radius r, = 2.0 mm floats freely inside a
vacuum bell jar. The pressure inside the bell jar is originally
p = 1 atm. The vacuum pump is turned on and the pressure
in the bell jar is slowly decreased to zero while the temper-
ature of the gas inside the bubble remains constant. What is
the radius of the soap bubble when the outside pressure

OMPUTER PROBLEMS

. A soap bubble with surface tension y = 2.50 X 102 N/m

has a radius ry, = 2.0 mm when the pressure outside the bub-
ble is 1.0 atmosphere. (a) Numerically calculate the radius of
the soap bubble when the pressure outside the bubble drops to
0.5 atm. (b) Numerically calculate the radius of the soap bub-
ble if the pressure outside the bubble is raised to 2.0 atm.

. A small balloon is filled with nitrogen gas (assumed ideal) at

the bottom of the Marianas Trench, 35,000 ft beneath the sur-
face of the ocean. The balloon originally has a radius of 1.0
mm, is massless, and is infinitely expandable without any sur-
face tension, but always keeps a spherical shape. Assume the

21.

22.
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drops to zero? The surface tension for a soap bubble is y =
2.50 X 1072 N/m. (See Computer Problem 1.)

A mercury-filled manometer with two unequal-length arms of
the same cross-sectional area is sealed off with the same pres-
sure p in the two arms, as in Fig. 21-23. With the temperature
constant, an additional 10.0 cm® of mercury is admitted
through the stopcock at the bottom. The level on the left in-
creases 6.00 cm and that on the right increases 4.00 cm. Find

the pressure p.
T —
p
50 cm /\ *
l 30 cm

Stopcock

FIGURE 21-23. Problem 21.

The “surface tension” of a certain spherical balloon is propor-
tional to the radius of the balloon. Originally the balloon is
filled with 10.0 L of an ideal gas at 80°C and 103 kPa. The
gas cools to 20°C; find the new volume of the balloon.
Assume that the pressure outside the balloon remains at
101 kPa.

ideal gas inside the balloon is at 4°C throughout this problem.
The balloon begins to rise to the surface, as the balloon rises
it expands, and as it moves there is a retarding force f propor-
tional to speed v and balloon radius r given by

f=6mmr,

where = 1.7 X 1073 N-s/m is the viscosity of water. (a)
Calculate the initial buoyant force on the balloon. (b) What
will be the size of the balloon on the surface? (c) Numerically
solve this problem to find out how long it takes for the bal-
loon to rise to the surface.



	Cover
	Title Page
	Copyright Page
	Preface to Volume 1
	Contents
	CHAPTER 1 MEASUREMENT����������������������������
	1-1 Physical Quantities, Standards, and Units����������������������������������������������������
	1-2 The International System of Units��������������������������������������������
	1-3 The Standard of Time�������������������������������
	1-4 The Standard of Length���������������������������������
	1-5 The Standard of Mass�������������������������������
	1-6 Precision and Significant Figures��������������������������������������������
	1-7 Dimensional Analysis�������������������������������
	Questions and Problems�����������������������������

	CHAPTER 2 MOTION IN ONE DIMENSION����������������������������������������
	2-1 Kinematics with Vectors����������������������������������
	2-2 Properties of Vectors��������������������������������
	2-3 Position, Velocity, and Acceleration Vectors�������������������������������������������������������
	2-4 One-Dimensional Kinematics�������������������������������������
	2-5 Motion with Constant Acceleration��������������������������������������������
	2-6 Freely Falling Bodies��������������������������������
	Questions and Problems�����������������������������

	CHAPTER 3 FORCE AND NEWTON'S LAWS�������������������������������������������������������������������������������������������������������������������
	3-1 Classical Mechanics������������������������������
	3-2 Newton's First Law����������������������������������������������������������������������������������
	3-3 Force����������������
	3-4 Mass���������������
	3-5 Newton's Second Law�������������������������������������������������������������������������������������
	3-6 Newton's Third Law����������������������������������������������������������������������������������
	3-7 Weight and Mass��������������������������
	3-8 Applications of Newton's Laws in One Dimension����������������������������������������������������������������������������������������������������������������������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 4 MOTION IN TWO AND THREE DIMENSIONS���������������������������������������������������
	4-1 Motion in Three Dimensions with Constant Acceleration����������������������������������������������������������������
	4-2 Newton's Laws in Three-Dimensional Vector Form����������������������������������������������������������������������������������������������������������������������������������������������������������������������
	4-3 Projectile Motion����������������������������
	4-4 Drag Forces and the Motion of Projectiles (Optional)���������������������������������������������������������������
	4-5 Uniform Circular Motion����������������������������������
	4-6 Relative Motion��������������������������
	Questions and Problems�����������������������������

	CHAPTER 5 APPLICATIONS OF NEWTON'S LAWS�������������������������������������������������������������������������������������������������������������������������������������
	5-1 Force Laws���������������������
	5-2 Tension and Normal Forces������������������������������������
	5-3 Frictional Forces����������������������������
	5-4 The Dynamics of Uniform Circular Motion��������������������������������������������������
	5-5 Time-Dependent Forces (Optional)�������������������������������������������
	5-6 Noninertial Frames and Pseudoforces (Optional)���������������������������������������������������������
	5-7 Limitations of Newton's Laws (Optional)�������������������������������������������������������������������������������������������������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 6 MOMENTUM�������������������������
	6-1 Collisions���������������������
	6-2 Linear Momentum��������������������������
	6-3 Impulse and Momentum�������������������������������
	6-4 Conservation of Momentum�����������������������������������
	6-5 Two-Body Collisions������������������������������
	Questions and Problems�����������������������������

	CHAPTER 7 SYSTEMS OF PARTICLES�������������������������������������
	7-1 The Motion of a Complex Object�����������������������������������������
	7-2 Two-Particle Systems�������������������������������
	7-3 Many-Particle Systems��������������������������������
	7-4 Center of Mass of Solid Objects������������������������������������������
	7-5 Conservation of Momentum in a System of Particles������������������������������������������������������������
	7-6 Systems of Variable Mass (Optional)����������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 8 ROTATIONAL KINEMATICS��������������������������������������
	8-1 Rotational Motion����������������������������
	8-2 The Rotational Variables�����������������������������������
	8-3 Rotational Quantities as Vectors�������������������������������������������
	8-4 Rotation with Constant Angular Acceleration������������������������������������������������������
	8-5 Relationships Between Linear and Angular Variables�������������������������������������������������������������
	8-6 Vector Relationships Between Linear and Angular Variables (Optional)�������������������������������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 9 ROTATIONAL DYNAMICS������������������������������������
	9-1 Torque�����������������
	9-2 Rotational Inertia and Newton's Second Law����������������������������������������������������������������������������������������������������������������������������������������������������������
	9-3 Rotational Inertia of Solid Bodies���������������������������������������������
	9-4 Torque Due to Gravity��������������������������������
	9-5 Equilibrium Applications of Newton's Laws for Rotation����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
	9-6 Nonequilibrium Applications of Newton's Laws for Rotation�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
	9-7 Combined Rotational and Translational Motion�������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 10 ANGULAR MOMENTUM����������������������������������
	10-1 Angular Momentum of a Particle������������������������������������������
	10-2 Systems of Particles��������������������������������
	10-3 Angular Momentum and Angular Velocity�������������������������������������������������
	10-4 Conservation of Angular Momentum��������������������������������������������
	10-5 The Spinning Top����������������������������
	10-6 Review of Rotational Dynamics�����������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 11 ENERGY 1: WORK AND KINETIC ENERGY���������������������������������������������������
	11-1 Work and Energy���������������������������
	11-2 Work Done by a Constant Force�����������������������������������������
	11-3 Power�����������������
	11-4 Work Done by a Variable Force�����������������������������������������
	11-5 Work Done by a Variable Force: Two-Dimensional Case (Optional)��������������������������������������������������������������������������
	11-6 Kinetic Energy and the Work-Energy Theorem
	11-7 Work and Kinetic Energy in Rotational Motion��������������������������������������������������������
	11-8 Kinetic Energy in Collisions����������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 12 ENERGY 2: POTENTIAL ENERGY��������������������������������������������
	12-1 Conservative Forces�������������������������������
	12-2 Potential Energy����������������������������
	12-3 Conservation of Mechanical Energy���������������������������������������������
	12-4 Energy Conservation in Rotational Motion����������������������������������������������������
	12-5 One-Dimensional Conservative Systems: The Complete Solution�����������������������������������������������������������������������
	12-6 Three-Dimensional Conservative Systems (Optional)�������������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 13 ENERGY 3: CONSERVATION OF ENERGY��������������������������������������������������
	13-1 Work Done on a System by External Forces����������������������������������������������������
	13-2 Internal Energy in a System of Particles����������������������������������������������������
	13-3 Frictional Work���������������������������
	13-4 Conservation of Energy in a System of Particles�����������������������������������������������������������
	13-5 Center-of-Mass Energy���������������������������������
	13-6 Reactions and Decays��������������������������������
	13-7 Energy Transfer by Heat�����������������������������������
	Questions and Problems�����������������������������

	CHAPTER 14 GRAVITATION�����������������������������
	14-1 Origin of the Law of Gravitation��������������������������������������������
	14-2 Newton's Law of Universal Gravitation����������������������������������������������������������������������������������������������������������������������������������������������
	14-3 The Gravitational Constant G����������������������������������������
	14-4 Gravitation Near the Earth's Surface�������������������������������������������������������������������������������������������������������������������������������������������
	14-5 The Two Shell Theorems����������������������������������
	14-6 Gravitational Potential Energy������������������������������������������
	14-7 The Motions of Planets and Satellites�������������������������������������������������
	14-8 The Gravitational Field (Optional)����������������������������������������������
	14-9 Modern Developments in Gravitation (Optional)���������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 15 FLUID STATICS�������������������������������
	15-1 Fluids and Solids�����������������������������
	15-2 Pressure and Density��������������������������������
	15-3 Variation of Pressure in a Fluid at Rest����������������������������������������������������
	15-4 Pascal's Principle and Archimedes' Principle�������������������������������������������������������������������������������������������������������������������������������������������������������������������
	15-5 Measurement of Pressure�����������������������������������
	15-6 Surface Tension (Optional)��������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 16 FLUID DYNAMICS��������������������������������
	16-1 General Concepts of Fluid Flow������������������������������������������
	16-2 Streamlines and the Equation of Continuity������������������������������������������������������
	16-3 Bernoulli's Equation�������������������������������������������������������������������������������������������
	16-4 Applications of Bernoulli's Equation and the Equation of Continuity����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
	16-5 Fields of Flow (Optional)�������������������������������������
	16-6 Viscosity, Turbulence, and Chaotic Flow (Optional)��������������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 17 OSCILLATIONS������������������������������
	17-1 Oscillating Systems�������������������������������
	17-2 The Simple Harmonic Oscillator������������������������������������������
	17-3 Simple Harmonic Motion����������������������������������
	17-4 Energy in Simple Harmonic Motion��������������������������������������������
	17-5 Applications of Simple Harmonic Motion��������������������������������������������������
	17-6 Simple Harmonic Motion and Uniform Circular Motion��������������������������������������������������������������
	17-7 Damped Harmonic Motion����������������������������������
	17-8 Forced Oscillations and Resonance���������������������������������������������
	17-9 Two-Body Oscillations (Optional)��������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 18 WAVE MOTION�����������������������������
	18-1 Mechanical Waves����������������������������
	18-2 Types of Waves��������������������������
	18-3 Traveling Waves���������������������������
	18-4 Wave Speed on a Stretched String��������������������������������������������
	18-5 The Wave Equation (Optional)����������������������������������������
	18-6 Energy in Wave Motion���������������������������������
	18-7 The Principle of Superposition������������������������������������������
	18-8 Interference of Waves���������������������������������
	18-9 Standing Waves��������������������������
	18-10 Standing Waves and Resonance�����������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 19 SOUND WAVES�����������������������������
	19-1 Properties of Sound Waves�������������������������������������
	19-2 Traveling Sound Waves���������������������������������
	19-3 The Speed of Sound������������������������������
	19-4 Power and Intensity of Sound Waves����������������������������������������������
	19-5 Interference of Sound Waves���������������������������������������
	19-6 Standing Longitudinal Waves���������������������������������������
	19-7 Vibrating Systems and Sources of Sound��������������������������������������������������
	19-8 Beats�����������������
	19-9 The Doppler Effect������������������������������
	Questions and Problems�����������������������������

	CHAPTER 20 THE SPECIAL THEORY OF RELATIVITY��������������������������������������������������
	20-1 Troubles with Classical Physics�������������������������������������������
	20-2 The Postulates of Special Relativity������������������������������������������������
	20-3 Consequences of Einstein's Postulates����������������������������������������������������������������������������������������������������������������������������������������������
	20-4 The Lorentz Transformation��������������������������������������
	20-5 Measuring the Space-Time Coordinates of an Event
	20-6 The Transformation of Velocities��������������������������������������������
	20-7 Consequences of the Lorentz Transformation������������������������������������������������������
	20-8 Relativistic Momentum���������������������������������
	20-9 Relativistic Energy�������������������������������
	20-10 The Common Sense of Special Relativity���������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 21 TEMPERATURE�����������������������������
	21-1 Temperature and Thermal Equilibrium�����������������������������������������������
	21-2 Temperature Scales������������������������������
	21-3 Measuring Temperatures����������������������������������
	21-4 Thermal Expansion�����������������������������
	21-5 The Ideal Gas�������������������������
	Questions and Problems�����������������������������

	CHAPTER 22 MOLECULAR PROPERTIES OF GASES�����������������������������������������������
	22-1 The Atomic Nature of Matter���������������������������������������
	22-2 A Molecular View of Pressure����������������������������������������
	22-3 The Mean Free Path������������������������������
	22-4 The Distribution of Molecular Speeds������������������������������������������������
	22-5 The Distribution of Molecular Energies��������������������������������������������������
	22-6 Equations of State for Real Gases���������������������������������������������
	22-7 The Intermolecular Forces (Optional)������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 23 THE FIRST LAW OF THERMODYNAMICS�������������������������������������������������
	23-1 Heat: Energy in Transit�����������������������������������
	23-2 The Transfer of Heat��������������������������������
	23-3 The First Law of Thermodynamics�������������������������������������������
	23-4 Heat Capacity and Specific Heat�������������������������������������������
	23-5 Work Done on or by an Ideal Gas�������������������������������������������
	23-6 The Internal Energy of an Ideal Gas�����������������������������������������������
	23-7 Heat Capacities of an Ideal Gas�������������������������������������������
	23-8 Applications of the First Law of Thermodynamics�����������������������������������������������������������
	Questions and Problems�����������������������������

	CHAPTER 24 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS��������������������������������������������������������������
	24-1 One-Way Processes�����������������������������
	24-2 Defining Entropy Change�����������������������������������
	24-3 Entropy Change for Irreversible Processes�����������������������������������������������������
	24-4 The Second Law of Thermodynamics��������������������������������������������
	24-5 Entropy and the Performance of Engines��������������������������������������������������
	24-6 Entropy and the Performance of Refrigerators��������������������������������������������������������
	24-7 The Efficiencies of Real Engines��������������������������������������������
	24-8 The Second Law Revisited������������������������������������
	24-9 A Statistical View of Entropy�����������������������������������������
	Questions and Problems�����������������������������

	APPENDICES
	A. The International System of Units (SI)
	B. Fundamental Physical Constants
	C. Astronomical Data
	D. Properties of the Elements
	E. Periodic Table of the Elements
	F. Elementary Particles
	G. Conversion Factors
	H. Vectors
	I. Mathematical Formulas
	J. Nobel Prizes in Physics

	ANSWERS TO ODD-NUMBERED PROBLEMS
	PHOTO CREDITS
	INDEX
	EULA





		2017-10-13T00:19:45+0000
	Preflight Ticket Signature




